					Doc. No.:	X3H7-93-007v12b

					Doc. Date:	May 25, 1997

					Reply to:	Frank Manola (Editor)

							Object Services and Consulting, Inc.

							151 Tremont Street #22R

							Boston, MA 02111 USA

							(617) 426-9287

							fmanola@objs.com

National Committee for Information Technology Standards

Technical Committee H7 Object Model Features Matrix

Disclaimers:

This Features Matrix is primarily intended for H7 use in analyzing object model interoperability issues. The Features Matrix is not intended to be an exhaustive description of all important object models. Rather, it is intended to be a representative sample of the design space of object models illustrating key (but not necessarily all) variations in important object model characteristics. Thus, inclusion of an object model in the matrix is not necessarily an indication of the object model's "importance"; it may simply incorporate a specific design choice of interest to H7. Similarly, exclusion of an object model is not necessarily an indication of an object model's "lack of importance". Although the committee has attempted to be accurate in its descriptions of the various models, these descriptions have not necessarily been verified or endorsed by those responsible for the development of those models. In addition, the descriptions of individual models have not necessarily been updated to track changes which may have been made in those models since the entries were compiled (although in some cases they have). The descriptions are intended to be consistent with the references cited for them.

Changes since last version:

The following are the changes made since version 10 was approved.

version 11:

deletion of information on projected entries

miscellaneous editorial corrections

versions 12, 12a, and 12b:

revised version of Analysis and Design Methods entry

revised version of SQL3 entry

added definition of “object model”

miscellaneous editorial corrections

I. Introduction

The H7 Object Model Features Matrix is organized by rows denoting various object models (or object-oriented languages/systems), and columns denoting specified object model features. The intent is to describe each object model (language/system) with respect to the specified features (an entry is intended to be text describing the model's support for the feature, not "yes" or "no"). The presentation of the matrix is in column order; that is, each column is defined, and the entries for each row for that column follow. This is to facilitate comparing models according to a given feature.

1.1 What is an Object Model?

The term object model, as used throughout this document, refers to the collection of concepts used to describe objects in a particular object-oriented language, specification, or analysis and design methodology, and corresponds closely to the use of the term data model in “the relational data model”. Thus, we speak of “the Smalltalk object model” or “the OMG object model”. This is in contrast to the use of object model to describe the collection of objects created to model a particular system or application, as in “the Automated Teller Machine object model” or “the object model of a windowing system” [RBPE+91]. From our point of view, [RBPE+91] defines a particular object model (our sense), which includes concepts like object, inheritance, attribute, and so on, and uses it to define the object models (second sense) of various applications. This dual usage is unfortunate, but is common in the literature.

I.1 Rows (Object Models)

The "rows" of the matrix are given below. For each row, the name of the submitter is given.

Object Model�Submitter�����OODBTG Reference Model�Craig Thompson��OMG Core Object Model�Bill Kent, updated by Frank Manola��OMG CORBA IDL�Don Belisle��ODMG�Gail Mitchell��EXPRESS�Steve Clark and Elizabeth Fong��Open Distributed Processing

 (ISO/IEC JTC1/SC21/WG7)�Ed Stull, updated by Haim Kilov��Management Information Model

 (ISO/IEC JTC1/SC21/WG4)�Laura Redmann��SQL3 (X3H2)�Frank Manola and Jeff Sutherland��Matisse�Jeff Sutherland��C++ (X3J16)�Frank Manola��OO COBOL (X3J4)�Frank Manola��Smalltalk (X3J20)�Glenn Hollowell��Eiffel�NICE (Eiffel Consortium)��Emerald�Frank Manola��Cecil�Frank Manola��SELF�Frank Manola��System Object Model (SOM)�Don Belisle��OLE Component Object Model	�Frank Manola��Analysis and Design Methods�Joaquin Miller��

The final row includes information on the object models used in various object analysis and design methods (hence this row itself contains entries for multiple models). The descriptions of these models are based on the descriptions of the methods as published in books. It is important to realize that the object model described here is not necessarily the object model of the author(s); it is the result of an attempt to capture the object model described in the book. The book may have been misinterpreted; the book may have used only a part of the author(s) complete object model; that model may have changed since the publication of the book.

Some authors have published more than one book. Sometimes these books separately cover analysis and design. Sometimes different sections of one book are devoted to analysis and to design. In any case, it is informative to note the elements of the object model used in analysis, and new or different elements used in design. Accordingly, the matrix entries sometimes distinguish the analysis model from the design model. In the cases of some authors, subsequent books in some sense replace an earlier book or books. In these cases, the model described is that of the book or books mentioned in 14. Background and References. When an author elaborates a concept of the model under the heading of construction, this is sometimes also indicated.

Where possible, the definitions of terms used by the author(s) have been quoted. The matter in “double quotes” is quoted directly from the books. Terms under discussion are enclosed in ‘single quotes’ when the term is mentioned, as opposed to a referent of the term. Matter in [square brackets] was inserted by the row submitter.

The analysis and design models included, and their identifications, are:

D:	Booch Design�CA:	Coad et al. Analysis�CD:	Coad et al. Design�EA:	Embly et al. Analysis�FA:	Coleman et al Analysis�FD:	Coleman et al Design�FC:	Coleman et al Construction�HA:	Henderson-Sellers et al. Analysis and Design�JA:	Jacobson et al. Analysis�JD:	Jacobson et al. Design�MD:	Meyer Design�MC:	Meyer Construction�NA:	Waldén et al. Analysis and Design�OA:	Odell et al. Analysis �RA:	Rumbaugh et al. Analysis�RD:	Rumbaugh et al. Design�SA:	Shlaer et al. Analysis�SD:	Shlaer et al. Design�WD:	Wirfs-Brock et al. Design

I.2 Columns (Features)

The "columns" (features) currently used in the features matrix are given below.

0.	Intended Use

1.	Basic Concepts

2.	Objects

	2.1	operations

	2.2	requests

	2.3	messages

	2.4	specification of behavioral semantics

	2.5	methods (including multimethods and method combinations)

	2.6	state

	2.7	object lifetime

	2.8	behavior/state grouping

	2.9	communication model

	2.10	events

	2.11	transition rules

3.	Binding

4.	Polymorphism

5.	Encapsulation

e.g., how are object boundaries defined?; how many object boundaries or interfaces are there (do subclasses or "friends" get special access to objects)? what are their characteristics?

6.	Identity, Equality, Copy

e.g., what things have identity: objects, or interfaces?

7.	Types and Classes

8.	Inheritance and Delegation

9.	Noteworthy Objects

	9.1	relationships

	9.2	attributes

	9.3	literals

	9.4	containment

	9.5	aggregates

	9.6	other

10. Extensibility

	10.1 Dynamic

	ability to add new methods, classes, change attributes, change types; can you 	freeze (prevent extensions)?

	10.2 Metaclasses/Metaobject Protocol

	how extensible is the class system? can new semantics be added?

	10.3 Introspection

	definitional aspects of instances; access to definitions (e.g., type/class objects) 	at run time)

11. Object Languages

12. Semantics of Base Classes (+ type constructors)

13. Background and References

Sources of matrix entries, and other relevant material.

The initial features list was developed at the July 1992 X3H7 meeting, and the features list has been amended several times since then. For most features, the OODBTG Reference Model matrix entry serves to define (or at least describe) the feature, and in some cases related features. This is because the features themselves were largely taken from the OODBTG final report.

I.3 Layout

As noted above, the presentation of the matrix is in column (feature) order; that is, each column (feature) is defined, and the entries for each row (object model) corresponding to that column follow. In the matrix itself, features (column headings) are written in boldface. Object models (or their sources) are underlined. Numbers appearing in plain text are paragraph or other numbers from source documents. Editor's Notes are written in italics. Citations refer to sources associated with the particular object model under discussion (see the entry for that object model under 13. Background and References), and are not necessarily unique within the entire Features Matrix.

��II. Features Matrix Entries

0.	Intended Use

The intended use of an object model describes such things as the application(s) of the object model, the context(s) or part(s) of the development lifecycle in which the object model is intended to be used, the level of abstraction of the objects defined using the model, and the purpose of object-orientation in the intended application. One reason for describing intended use is to explain the presence or absence of specific object model features in terms of application requirements.

ODMG

The ODMG Object Model is intended to allow portability of applications among object database products. It provides a common model for these products by defining extensions to the OMG object model that support object database requirements. In particular, the ODMG model extends the OMG core to provide for persistent objects, object properties, more specific object types, queries and transactions.

EXPRESS

EXPRESS is a language directed towards the conceptual modeling of domains within the field of Product Data. Although computer processability is a design goal, a conscious attempt has been made to avoid including constructs or features in the language which are directed towards ease of implementation or towards the development of physical schemas. EXPRESS is not intended to model dynamics: an EXPRESS schema describes a valid population of the universe of discourse, but does not specify how that population can be transformed into another valid population.

C++

C++ is a general-purpose object-oriented programming language, and is intended to be an improved C with object capabilities.

OOCOBOL

COBOL Object Orientation and associated capabilities provides facilities for developing object-oriented programs using the COBOL programming language. (For the rest of this Features Matrix entry, these facilities will be referred to as OO COBOL.) These facilities are currently part of a proposal [Obi94] to extend standard COBOL as the result of work by an X3J4 task group, and have not been officially approved by X3J4.

Smalltalk

Smalltalk is a general purpose object-oriented programming language.

Eiffel

Eiffel is an object-oriented language designed for the specification, design implementation and modification of large applications and reusable components. Its range extends over most application domains including (most prominently) business applications.

Emerald

Emerald is an object-oriented programming language designed for the development of distributed applications (although it can also be used for general-purpose programming).

Cecil

Cecil is an object-oriented language intended for both exploratory and production programming.

SELF

SELF is an object-oriented language intended for exploratory programming.

OLE Component Object Model

OLE (and its Component Object Model) provide a basis for application interoperation in the Microsoft Windows environment.

Analysis and Design Methods

These models are intended to be used in analysis and design, as opposed to the construction of systems. This is not to imply that the same model would not be used during construction and maintenance. In fact, some authors stress that this is their intention: that the transition to construction be ‘seamless,’ have no ‘impedance mismatch’ or ‘semantic gap.’

�1.	Basic Concepts

OMG Core Object Model

4.2.1 Basic Concepts

The OMG Object Model is based on a small number of basic concepts: objects, operations, types, and subtyping. An object can model any kind of entity, for example a person, a ship, a document, a department, a tuple, a file, a window manager, or a lexical scanner. A basic characteristic of an object is its distinct identity, which is immutable, persists for as long as the object exists, and is independent of the object's properties or behavior.

4.1.5 Profiles

There exists a wide range of domains that place requirements on the object model, for example databases, user interfaces, and programming languages. Unfortunately, not all of these domains agree on the importance/relevance of all aspects that could be defined to the object model. Thus, the Core Model, defined in section 4.2, has been defined to capture a set of object model concepts that all domains must support, and components, described in the OMG OM Components Guide, have been defined to permit important extensions to the core model.

Editor's note: the OMG OM Components Guide exists in draft form only.

Profiles exist to group components. A particular domain will group components which provide extensions that the domain considers important to meet the needs to its specific user community. Profiles can be technology-based; for example databases or programming languages. Profiles can also be application-based; for example CAD or Finance.

Some example profiles that are being considered include:

o Object request broker

o Object database

o Requirements and Analysis

o User interface

OMG CORBA IDL

The CORBA Specification, published by the Object Management Group, is both an architecture which encompasses an object model and a specification which defines among other things, an Interface Definition Language (IDL). IDL permits interfaces to objects to be defined independent of an objects implementation. After defining an interface in IDL, the interface definition is used as input to an IDL compiler which produces output that can be compiled and linked with an object implementation and its clients.

CORBA supports clients making requests to objects. The requests consist of an operation, a target object, zero or more parameters and an optional request context. A request causes a service to be performed on behalf of a client and results of executing the request returned to the client. If an abnormal condition occurs during execution of the request an exception is returned.

Interfaces can be used either statically or dynamically. An interface is statically bound to an object when the name of the object it is accessing is known at compile time. In this case, the IDL compiler generates the necessary output to compile and link to the object at compile time. In addition, clients that need to discover an object at run time and construct a request dynamically, can use the Dynamic Invocation Interface (DII). The DII is supported by an interface repository which is defined as part of CORBA. By accessing information in the interface repository, a client can retrieve all of the information necessary about an objects interface to construct and issue a request at run time. Since the static and dynamic requests are equally expressive semantically there will be no further distinction in this discussion between these two methods of invoking operations on objects.

CORBA has been postured as being both language-neutral and independent of ORB and CORBA object implementations. CORBA supports bindings for C but it is anticipated that it will eventually support language mappings for C++, Smalltalk and COBOL.

ODMG

The basic concepts are objects, types, operations, properties, identity and subtyping. Objects have state (defined by the values of their properties), behavior (defined by operations) and identity. All objects of the same type have common behavior and properties.

Types are objects so may have their own properties. A type has an interface and one or more implementations. All things are instances of some type and subtyping organizes these types in a lattice. A type definition can declare that an extent (set of all instances) be maintained for the type.

EXPRESS

EXPRESS specifies an information domain in terms of Entities (classes of objects sharing common characteristics). Entities have associated attributes and constraints, which represent these common characteristics. Constraints are written using a very expressive mix of declarative and procedural language.

Management Information Model

Managed objects are abstractions of data processing and data communications resources for the purposes of management... The design of systems management requires that an approach be adopted that will allow the specifications to be standardized in a modular fashion and provide the extensibility of the protocol and procedures. The information model makes use of object-oriented design principles because they provide the above capabilities and provide for reuse of pieces of specification. [Part 1]

Managed objects are defined for the purpose of managing systems. Each managed system may contain a Management Information Base (MIB). In the MIB, managed objects are used to represent the resources that may be managed within the system. A MIB is the conceptual repository of the management information within an open system. It represents the resources in a managed system that have been externalized for communication with a managing system. They are externalized in the sense that a managing system has knowledge of the MIB, not of the actual data structures of the managed system's internal database; and the two may be vastly different. Resources that are not managed do not need managed object representations. By managing this MIB, a managing system can control the managed system's actual resources. This control includes the ability to retrieve information about the resources and to provision, reconfigure, or inhibit the capabilities of the resources within a managed system.

SQL3

ANSI (X3H2) and ISO (ISO/IEC JTC1/SC21/WG3) SQL standardization committees have for some time been adding features to the SQL specification to support object-oriented data management. The current version of SQL in progress including these extensions is often referred to as "SQL3" [ISO96a,b]. SQL3 object facilities primarily involve extensions to SQL’s type facilities; however, extensions to SQL table facilities can also be considered relevant. Additional facilities include control structures to make SQL a computationally complete language for creating, managing, and querying persistent object-like data structures. The added facilities are intended to be upward compatible with the current SQL92 standard (SQL92). This and other sections of the Features Matrix describing SQL3 concentrate primarily on the SQL3 extensions relevant to object modeling. However, numerous other enhancements have been made in SQL as well [Mat96]. In addition, it should be noted that SQL3 continues to undergo development, and thus the description of SQL3 in this Features Matrix does not necessarily represent the final, approved language specifications.

The parts of SQL3 that provide the primary basis for supporting object-oriented structures are:

•	user-defined types (ADTs, named row types, and distinct types)

•	type constructors for row types and reference types

•	type constructors for collection types (sets, lists, and multisets)

•	user-defined functions and procedures

•	support for large objects (BLOBs and CLOBs)

One of the basic ideas behind the object facilities is that, in addition to the normal built-in types defined by SQL, user-defined types may also be defined. These types may be used in the same way as built-in types. For example, columns in relational tables may be defined as taking values of user-defined types, as well as built-in types. A user-defined abstract data type (ADT) definition encapsulates attributes and operations in a single entity. In SQL3, an abstract data type (ADT) is defined by specifying a set of declarations of the stored attributes that represent the value of the ADT, the operations that define the equality and ordering relationships of the ADT, and the operations that define the behavior (and any virtual attributes) of the ADT. Operations are implemented by procedures called routines. ADTs can also be defined as subtypes of other ADTs. A subtype inherits the structure and behavior of its supertypes (multiple inheritance is supported). Instances of ADTs can be persistently stored in the database only by storing them in columns of tables.

A row type is a sequence of field name/data type pairs resembling a table definition. Two rows are type-equivalent if both have the same number of fields and every pair of fields in the same position have compatible types. The row type provides a data type that can represent the types of rows in tables, so that complete rows can be stored in variables, passed as arguments to routines, and returned as return values from function invocations. This facility also allows columns in tables to contain row values. A named row type is a row type with a name assigned to it. A named row type is effectively a user-defined data type with a non-encapsulated internal structure (consisting of its fields). A named row type can be used to specify the types of rows in table definitions. A named row type can also be used to define a reference type. A value of the reference type defined for a specific row type is a unique value which identifies a specific instance of the row type within some (top level) database table. A reference type value can be stored in one table and used as a direct reference (“pointer”) to a specific row in another table, just as an object identifier in other object models allows one object to directly reference another object. The same reference type value can be stored in multiple rows, thus allowing the referenced row to be “shared” by those rows.

Collection types for sets, lists, and multisets have also been defined. Using these types, columns of tables can contain sets, lists, or multisets, in addition to individual values.

Tables have also been enhanced with a subtable facility. A table can be declared as a subtable of one or more supertables (it is then a direct subtable of these supertables), using an UNDER clause associated with the table definition. When a subtable is defined, the subtable inherits every column from its supertables, and may also define columns of its own. The subtable facility is completely independent from the ADT subtype facility.

See also 2. Objects and 7. Types and Classes.

�Matisse

A convergence of view between the object technology and relational database communities has recently emerged. All parties are agreed that object oriented features outlined in The Object-Oriented Database System Manifesto [1] are highly desirable. The X3H2 Database Standards Committee has released a draft SQL3 Specification that incorporates a number of object-oriented features [see SQL3 entries in this matrix]. The relational database community published the Third-Generation Database System Manifesto [2] to specify three tenets that new database technologies must support to be generally useful.

The first tenet specifies that "third generation DBMSs will provide support for richer object structures and rules," a view that is consistent with the object database community. The second tenet specifies that "third generation DBMSs must subsume second generation DBMSs." In particular, the authors note that second generation systems (relational databases) improved over first generation systems (CODASYL and hierarchical databases) by providing non-procedural access (SQL) and data independence (ANSI/X3/SPARC Three Schema Architecture [3]). The third tenet requires that third generation DBMSs be open to other subsystems. Friendly access from many programming languages, tools, and applications running on a variety of operating systems and hardware is mandatory.

Matisse claims to support language independence, an open systems environment, and multiple data models, including a complete object model, and to meet the requirements of both the Object-Oriented Database System Manifesto and the Third Generation Database System Manifesto. [4]

C++

In C++, an object is a region of storage with associated semantics. In the context of the object model of C++, the term object refers to an instance of a class. A class defines the characteristics of its instances in terms of members: data members (state) and member functions (methods or operations), and the visibility of these members to other classes. C++ is statically typed.

OOCOBOL

OO COBOL includes the following:

1. The ability to define classes, comprising class object definitions and object definitions.

2. The ability to define data encapsulated inside class objects and objects.

3. The ability to define methods for class objects and objects.

4. The ability to use inheritance and define subclasses.

5. The ability to use polymorphism and interfaces for maximum flexibility.

6. The ability to define data items able to hold references to objects.

7. The ability to invoke methods on objects.

8. The ability to create and manage objects as required.

9. The ability to use objects as a normal part of COBOL programming in developing new programs and maintaining existing programs.

�Smalltalk

Smalltalk is uniformly object-oriented because everything that the Smalltalk programmer deals with is an object, from a number to an entire application. Within the context of Smalltalk, objects are implemented in code through encapsulation and polymorphism.

Encapsulation is the approach used in Smalltalk to bundle everything needed into an object to preserve the integrity of the enclosed data. The code within an object performs operations on the objects internal data. Operations in Smalltalk are performed as the result of a messages being sent to an object to execute a specific portion of its code (usually called a “method”). For instance the statement “2 + 3” is a request to the receiver object “2” to perform the “+” method using the passed value “3.” Intuitively it is assumed that “2” is being asked to add “3” to itself and return a value of “5.” The message “CorporateBudget updateWith: lastRevision” could be equally meaningful, but in both cases, how the receiver object implements the operation is hidden from external view through encapsulating the details within the object.

Polymorphism is the way that the Smalltalk language allows methods of the same name to have predictable and meaningful results in related instances, yet perform the operations differently to achieve the results. The method “updateWith,” introduced in the prior paragraph, might reasonably have different code logic if it were encapsulated in the “ProjectBudget” object rather than the “CorporateBudget,” but we can surmise that if the method name reflects predictability, the effects should be the same in either object.

Polymorphism is typically implemented in Smalltalk through the abstraction of the common properties of a group of objects into classes and hierarchically subclassing shared properties using inheritance—along with specialization of the subclass to define the differences.

Classes serve as templates because they define the instance variables for all the class instance variables and methods. The instance of a class is created by sending a new message to the class which uniquely identifies the object instance and allocates space for its variable(s).

Eiffel

Eiffel is based on a pure object model. All entities in an Eiffel program are objects and all objects are instantiated from one (and only one) base generating class.

An Eiffel class is an implementation of an abstract data type i.e., a class describes the operations available to the type and formal properties of those operations. A class describes possible run-time objects.

Eiffel is strongly typed. Every entity is declared of a particular type.

An Eiffel program is a collection of classes with one class designated as the `root' class from which execution begins. This involves the creation of an object of the root class and subsequent creation of other objects by that newly created object.

Emerald

Emerald is a strongly-typed object-oriented language. All entities in Emerald are objects. This includes small entities, such as Booleans and integers, and large entities, such as directories and compilers. All objects exhibit uniform (object) semantics even though they may be implemented with different techniques. Objects are the units of programming and distribution, and the entities between which communication takes place. An object can be manipulated only through invocation of its exported operations; no external access to an object's data is permitted. Operations can be invoked on non-local (in the network) objects, and objects can move from node to node. [BHJL86]

Cecil

Cecil is based on a pure object model. All data are objects, and objects are manipulated solely by passing messages. Cecil uses a classless (prototype-based) object model, in which (conceptually) self-sufficient objects implement data abstractions, and objects inherit directly from other objects (delegation) to share code. Cecil also supports a general form of dynamic binding based on multiple dispatching. Cecil attempts to combine multi-methods with traditional object-oriented language concepts, such as encapsulation and static type checking.

SELF

SELF is a dynamically-typed object-oriented language. Like Smalltalk, SELF has no type declarations. Also like Smalltalk, SELF provides blocks (lexically-scoped function objects related to closures) as a basic construct. Standard control structures for iteration and Boolean selection, as well as programmer-defined control structures, are constructed out of these blocks. However, unlike Smalltalk and many other object-oriented languages, SELF has no classes. Instead it is based on the use of prototypes. In this approach, new objects are created by cloning (shallow-copying) existing objects (the prototypes). The state of the new objects can then be set to instance-specific values. Each object conceptually defines its own object-specific behavior, and may borrow behavior from other objects (called parents) using delegation (instance-level inheritance). Also unlike Smalltalk, a SELF object accesses its state entirely by sending messages rather than using special syntax for accessing a variable or changing its value. This results in many messages sent to "self", hence the name of the language. [US87, CUL89]

System Object Model (SOM)

SOM (System Object Model) is a library packaging technology that enables languages to share class libraries regardless of the language they were written in. This ability to share class libraries between various object oriented languages solves many interoperability and re-use problems between object oriented and non object oriented languages as well.

Key characteristics of SOM in support of these key commercial requirements include:

- the ability to create portable shrink wrapped binaries

- the ability to create class libraries in one language that can be accessed and used by other languages

- the ability to subclass from binaries even if they were written in a different language

- the ability to add new methods and relocate existing methods without re-compilation of the application

- the ability to insert new classes into the inheritance hierarchy without recompiling the application.

SOM provides an object model distinct from those contained in object oriented programming languages yet does not interfere with the use of those models in the same application that is using SOM. In addition, SOM can be used with procedural programming languages thus providing an object model for those languages that do not have one.

SOM consists of an Interface Definition Language (with an accompanying compiler), a run-time environment with procedure calls, and a set of enabling frameworks.

SOM is an IBM technology that is being licensed to other companies in anticipation of extending its benefits to heterogeneous environments. In addition, a number of language vendors are working on providing native SOM capability for their compilers.

OLE Component Object Model

Microsoft's OLE provides an application integration framework for Microsoft Windows. OLE defines the Component Object Model, which specifies a programming-language-independent binary standard for object implementations (i.e., it specifies what the implementation of the objects has to look like). Any object conforming to this standard is a legitimate Windows Object, no matter what language is used to implement it. The programming model is synchronous, based on a "Lightweight Remote Procedure Call" (lightweight because, at least at the moment, the calls are not really remote; they are all made on one machine).

In the Component Object Model, the concept of interface assumes great importance. An interface is "a set of semantically related functions implemented on an object" [Bro94a]. The Component Object Model uses the word "interface" by itself to refer to the definition (signatures) of those functions. An implementation of an interface is an array of pointers to functions. Any code that has a pointer to that array can call the functions in that interface. A Windows Object implements one or more interfaces, i.e., provides pointers to function tables for each supported interface.

Users of objects always obtain and act through pointers to object interfaces; users never obtain pointers to an entire object. For example, when the user of some object first obtains a pointer to the object, the user actually gets a pointer to one of the object's interfaces. This pointer allows the user to call only the functions in that one interface's function table. Through this pointer, the user has no access to any state of the object, nor does the user have any direct access to functions in other interfaces.

OLE defines a standard function, called QueryInterface, through which the user of one interface of an object can obtain a pointer to another interface of the same object. QueryInterface is part of an interface called IUnknown, which defines a group of fundamental functions that all Windows Objects support (thus IUnknown is supported by all objects). All other interfaces in OLE are derived from IUnknown, so all interfaces contain the QueryInterface function. This insures that navigation is always possible between the interfaces of a given object.

Using QueryInterface, the user of an object can discover the capabilities of that object at run-time by asking for pointers to specific interfaces. This enables an object to implement as many interfaces as it wants. Because all Windows Objects implement at least IUnknown, there is always some basic way for a user to communicate with any object.

The function table that implements an interface is designed to have a layout that is identical to the one generated by many C++ compilers. This layout allows a single indirection (->) on the pointer to call an interface function. However, while this makes the use of C++ to program OLE convenient, this is not a requirement. An object implementation is only required to provide separate function tables for each supported interface. How these tables are created can differ, depending on the particular language used. Because neither use or implementation of a Windows Object is dependent on the programming language used, the Component Object Model is referred to as a binary standard. This provides for language independence without involving the definition of a separate language (e.g., an Interface Definition Language).

�2.	Objects

Editor's Note: There is currently a great deal of overlap among the various subsections of this section (i.e., the subsections describing "operations", "requests", "messages", "events", and so on). This will need to be dealt with as further glossary work is done, and further analysis of the Features Matrix entries takes place.

OODBTG Reference Model

See entry under 2.1	operations

OMG Core Object Model

See entry under 2.1	operations

OMG CORBA IDL

An object is an identifiable, encapsulated entity that provides one or more services that can be requested by a client [CORBA Specification 2.2.1 Objects].

ODMG

Objects are instances of a type, and as such have state, behavior and identity. All objects are of type Denotable_Object. An object can be mutable (instance of type "object") or immutable (instance of type "literal"). The remainder of this note will use the term object to refer to mutable objects.

Objects and literals can be atomic or structured. The identity of objects is represented by OIDs; typically literals are identified by their value. Objects may also have meaningful name(s) in addition to identity (properties of objects include "has_name?" and "names").

EXPRESS

An EXPRESS Entity type represents a class of real-world objects which share common properties. The instances of this data type then individually represent these real-world objects.

Management Information Model

A managed object is an abstraction of a physical or logical entity for the purpose of management. It contains the specific information associated with the management of that physical or logical entity.

A managed object class defines the characteristics of a type of physical or logical resource. Instances of a managed object class exist to represent specific instances of a resource. Therefore, a managed object is an instance of a managed object class. The terms "object" and "object instance" are synonymous.

SQL3

One of the basic ideas behind the object extensions in SQL3 is that, in addition to the normal built-in types defined by SQL, user-defined types may also be defined. These types may be used in the same way as built-in types. For example, columns in relational tables may be defined as taking values of user-defined types, as well as built-in types. A user-defined abstract data type (ADT) definition encapsulates attributes and operations in a single entity. In SQL3, an abstract data type (ADT) is defined by specifying a set of declarations of the stored attributes that represent the value of the ADT, the operations that define the equality and ordering relationships of the ADT, and the operations that define the behavior (and any virtual attributes) of the ADT. Operations are implemented by procedures called routines. ADTs can also be defined as subtypes of other ADTs. A subtype inherits the structure and behavior of its supertypes (multiple inheritance is supported). Instances of ADTs can be persistently stored in the database only by storing them in columns of tables.

A row type is a sequence of field name/data type pairs resembling a table definition. Two rows are type-equivalent if both have the same number of fields and every pair of fields in the same position have compatible types. The row type provides a data type that can represent the types of rows in tables, so that complete rows can be stored in variables, passed as arguments to routines, and returned as return values from function invocations. This facility also allows columns in tables to contain row values. A named row type is a row type with a name assigned to it. A named row type is effectively a user-defined data type with a non-encapsulated internal structure (consisting of its fields). A named row type can be used to specify the types of rows in table definitions. A named row type can also be used to define a reference type. A value of the reference type defined for a specific row type is a unique value which identifies a specific instance of the row type within some (top level) database table. A reference type value can be stored in one table and used as a direct reference (“pointer”) to a specific row in another table, just as an object identifier in other object models allows one object to directly reference another object. The same reference type value can be stored in multiple rows, thus allowing the referenced row to be “shared” by those rows.

Tables have also been enhanced with a subtable facility. A table can be declared as a subtable of one or more supertables (it is then a direct subtable of these supertables), using an UNDER clause associated with the table definition. When a subtable is defined, the subtable inherits every column from its supertables, and may also define columns of its own. The subtable facility is completely independent from the ADT subtype facility.

See also 7. Types and Classes, and 8. Inheritance and Delegation.

Matisse

In April, 1993, at a public meeting of experts in object technology standards and SQL3 language development, the following tenets were proposed as fundamental to the object paradigm. [5]

T1. A first class object has unique, immutable identity within its scope in a distributed environment.

This is essential for pointer navigation in a database, for maintenance of the referential integrity of the database without a lot of extra overhead doing special checking, for allowing multiple unique objects with the same attribute values, and for many important analysis and design considerations. Khoshafian et al. [6] outline the many technical advantages of object identity.

T.2. A first class object always knows what type(s) it is.

Several problems are associated with an object not knowing what type it is. For example, if persistent objects lose knowledge of their type when read from the database into memory, this affects the association of proper behavior with the object.

T.3 A instance of a subtype is always an instance of its supertype.

This is a major feature in most commercial object-oriented products because it allows type safe utilization of supertype instances anywhere in a program where the subtype is expected.

T.4. First class links occur only between first class objects.

Support of inverse links on first class links guarantees the referential integrity of a database without the additional overhead of stored procedures.

The Matisse Object Model supports these fundamental tenets with the caveat that Matisse objects can only be of one type. All Matisse objects are first class objects including instances, class schemas, and the Matisse metamodel (all are stored as objects in the database).

The structure and behavior of Matisse objects flows from the Matisse metamodel. The user can modify the metamodel, which changes the Matisse object model. The metamodel is a template for creation of the class schema. Class schema objects are, in turn, templates for creation of instances of a class.

Matisse is a completely versioned database supporting copy semantics. A change to an object always results in creation of a new version of the object without altering previous versions or the object identifier (OID) of the object. Versioning is orthogonal to object model considerations and is handled transparently by the Matisse Server Engine.

	 �

C++

In C++, an object is a region of storage with associated semantics. The declaration int i;, specifies that i is an object of type int. In the context of the object model of C++, the term object refers to an instance of a class. Thus a class defines the behavior of possibly many objects (instances). Objects are usually referred to by references, which are aliases for an object. "The obvious implementation of a reference is as a (constant) pointer that is dereferenced each time it is used." [Str92]

A C++ class definition generates a user-defined type. A class defines the characteristics of its instances in terms of members: data members (state) and member functions (methods or operations), and the visibility of these members to other classes. The class defines the form of all objects that belong to that class. Each object of the class that is created gets a copy of all the class data members, except for those declared as static (see entry under 2.6 state). All objects of a particular class share the member functions for that class.

OOCOBOL

An object is a single entity comprising data and methods. An object belongs to a class. A class describes the structure of the data and the methods that apply to all the objects belonging to that class. A class also has a single class object with data and methods. The class object is an object that acts as a creator of objects.

Each object has an interface comprising the names and parameter specifications for each method supported by the object. Each class defines two interfaces: an interface defining the methods supported by the class object (the class object interface), and the interface to be supported by each instance of the class.

Interfaces independent of class objects or class instances may be defined by listing the method names and parameter specifications supported by those interfaces. Such an interface may be specified in the declaration of an object identifier to restrict the objects that may be referred to by that identifier to objects whose interfaces conform to the specified interface. Conformance is a relationship between interfaces. One interface is said to conform to a second interface if an object that implements all the methods specified in the first interface may be used anywhere an object that implements all the methods specified in the second interface may be used. A formal definition for conformance is included in the specifications [Obi94].

See also entry under 7. Types and Classes.

Editor's Note: The concept of conformance in OO COBOL resembles that in the Emerald language.

Smalltalk

An object is an encapsulated software component made up of memory and operations that creates a coherent programming entity. All objects are an instance of a class. Everything in Smalltalk is an object—from numbers to entire applications. Objects have public and private properties. An object’s implementation details are private and are hidden from other objects. An object’s public properties are its messages that make up its interface. The object’s private properties are its variables. Interaction with an object only occurs via these messages to its interface. All object instances of a given class have a common message interface.

Eiffel

Objects in Eiffel are instances of an abstract data type. The properties of abstract data types are described in a class.

An abstract data type separates the implementation of a class from the `public interface'. The public interface details the ways an object can be manipulated through operations. There may be more than one public interface for a particular Eiffel class. The interface depends on the type of the object requesting a particular operation. For example, an operation `op' may be public to class `A' but not to class `B'. See also entry under 5. Encapsulation.

Objects have an immutable identity that exists for the lifetime of the object. The identity of all objects in an Eiffel program are unique.

Objects have unique state (i.e., the data for each object is unique). Objects of the same type share the same implementation. It is also possible for objects to share particular state entities among all instance of their type.

Entities may be either references to objects (called a reference type) or may be actual objects themselves (called expanded types). See also entry under 9.4 Containment.

�Emerald

Each Emerald object has four components:

1. A name, which uniquely identifies the object within a distributed network

2. A representation, which consists of the data stored in the object. The representation of a programmer-defined object is composed of a collection of references to other objects.

3. A set of operations, which define the functions and procedures that the object can execute. Some operations are exported and may be invoked by other objects; others are private and may only be invoked by the containing object.

4. An optional process, which operates in parallel with invocations of the object's operations. An object with a process is active and executes independently of other objects. An object without a process is passive and executes only as a result of invocations.

An Emerald object also has several attributes. An object has a location that specifies the node on which the object is currently resident. Emerald objects can be defined to be immutable; this simplifies sharing in a distributed system, since immutable objects can be freely copied. Immutability is an assertion by the programmer that the abstract state of an object does not change; it is not a concrete property, and the system does not attempt to check it. [BHJL86]

See entry under 2.9 communication model for an example object definition.

SELF

SELF objects consist of named slots, each of which contains a reference to some other object. Some slots may be designated as parent slots by appending asterisks to their names (objects may have multiple parents, thus supporting multiple inheritance) [CUL89]. Objects may also have SELF code associated with them by having slots contain references to method objects containing the code.

When a message is sent to an object (called the receiver of the message), the object is searched for a slot with the same name as the message. If a matching slot is not found, the contents of the object's parent slots are searched recursively, using built-in multiple inheritance rules to disambiguate any duplicate matching slots. [This search is similar to that which takes place in a class-based system during dispatching, except that in SELF the objects being searched are instances representing application entities, rather than class objects representing descriptions of other objects.] Once a matching slot is found, its contents are evaluated and the result is returned as the result of the message send. An object accesses its own state (slots) by sending messages to "self" (the receiver of the current message).

A non-code object evaluates to itself (and so the slot holding it acts like a variable). A method object is a prototype activation record. When evaluated, the method object clones itself, fills in its self slot with the receiver of the original message, fills in its argument slots (if any) with the arguments of the message, and executes its code. The self slot is a parent slot so that the cloned activation record inherits from the receiver of the original message. [US87]

SELF supports assignment to data slots by associating an assignment slot with each assignable data slot. The assignment slot contains the assignment primitive object (effectively a method). When the assignment primitive is evaluated as the result of a message send, it stores its argument into the associated data slot. A data slot with no corresponding assignment slot is a constant or read-only slot, since a running program cannot change its value. For example, most parent slots are constant slots. However, a parent slot can be made assignable by defining a corresponding assignment slot. An assignable parent slot permits an object's inheritance to be changed dynamically. [CUL89] See entry under 2.6 state.

System Object Model (SOM)

SOM objects are derived from a root object which defines the essential behavior common to all SOM objects. Factory methods are used to create SOM objects at run time. These factory methods are invoked on a class object, in the SOM run-time.

OLE Component Object Model

The Component Object Model specifies a programming-language-independent binary standard for object implementations (i.e., it specifies what the implementation of the objects has to look like). Any object conforming to this standard is a legitimate Windows Object, no matter what language is used to implement it.

Users of objects always obtain and act through pointers to object interfaces. An implementation of an interface is an array of pointers to functions (the functions themselves are implemented by the object). Any code that has a pointer to that array can call the functions in that interface. A Windows Object implements one or more interfaces, i.e., provides pointers to function tables for each supported interface. Users never obtain pointers to an entire object. For example, when the user of some object first obtains a pointer to the object, the user actually gets a pointer to one of the object's interfaces. This pointer allows the user to call only the functions in that one interface's function table. Through this pointer, the user has no access to any state of the object, nor does the user have any direct access to functions in other interfaces.

A Windows Object is any object, in whatever form, that supports at least one predefined interface, called IUnknown. As part of the IUnknown interface, OLE defines a standard function, called QueryInterface, through which the user of one interface of an object can obtain a pointer to another interface of the same object. QueryInterface takes as input a pointer to an interface identifier (IID) for the desired interface, and either returns an error (and a NULL pointer), meaning the object does not support the interface, or a valid pointer to the new interface. [See entry under 6. Identity, Equality, Copy for a discussion of IIDs.] All other interfaces in OLE are derived from IUnknown, so all interfaces contain the QueryInterface function (the other two functions of IUnknown are AddRef and Release). This insures that navigation is always possible between the interfaces of a given object.

A Windows Object must be able to provide a separate function table for each interface it supports. The implementation of the IUnknown functions in each supported interface must be "aware" of the entire object, because they must be able to access all other interfaces in the object and must be able to affect the object's reference count.

The implementation in the component object library (COMPOBJ.DLL) provides a small number of fundamental API functions that permit creation of what is called a Component Object, a special type of Windows Object identified with a unique class identifier that associates an object with a particular DLL or EXE in the file system. A Windows Object does not always need to be structured as a Component Object such that the API functions in COMPOBJ.DLL can create it. Use of such API functions is merely one way through which an initial pointer to an object can be obtained.

Unlike C++, where objects are defined using class definitions which generate user-defined types, Windows Objects are defined in terms of the interfaces they support. Since all objects support at least one interface (IUnknown), all Windows Objects are at least of type IUnknown, and can be treated as being of another type by using a different interface. Because of this mechanism, there is no single user-defined type associated with a Windows Object class, as there is with a C++ class. In fact, there is no specific way to identify a specific object. This is because object references (pointers) in Windows Objects are not references to the object itself, as in C++, but rather are pointers to one of the object's interfaces. Given a pointer to an interface, the user can access only functions contained in that interface. The user can never have a pointer to the whole object (because there is no direct user-visible concept of "whole object"), so there is no direct access to state, and no concept of "friend" as in C++. Through the IUnknown interface, a user can obtain pointers to other interfaces that the object also supports, but this means obtaining a different pointer that refers (indirectly) to the same object. Each pointer to an interface points to a function table associated with the object, and each table contains only functions for a specific interface. Because a pointer to a Windows Object always points to a function table, such a pointer can also be used from within programs written in languages other than C++, such as C or assembly code.

The list of interfaces that an object of a specific class supports is constant only within a specific object's lifetime, and can vary between different instances of objects of the same class. It cannot be assumed that if Object 1 of class X supports a particular set of interfaces, Object 2 of class X does as well. (Note that the "class" denotes the application providing the object's implementation, not the set of interfaces (type) supported). It also cannot be assumed that if objects of class X once supported interface Y, they always will, because the object might change later. This provides justification for the QueryInterface mechanism of dynamically finding out about interfaces. It is always possible to find out about other interfaces the object supports; thus, if an object is acquired as an instance of a "superclass", it is possible to find out what specific "subclass" it is by examining the other interfaces at runtime. There is no requirement to always treat an object as an instance of the type (interface) through which it was originally acquired.

Analysis and Design Methods

SA:	“Definition: An object is an abstraction of a set of real-world things: such that:

•	all of the real-world things in the set-–the instances--have the same characteristics

•	all instances are subject to and conform to the same rules.”

‘Object’ is used in two senses: 1. a typical unspecified instance 2. the class of all instances.

CA:	“An abstraction of something in the domain of a problem or its implementation, reflecting the capabilities of a system to keep information about it, interact with it, or both; an encapsulation of Attribute values and their exclusive Services. (Synonym: an Instance.)”

RA:	“A discrete, distinguishable entity which quantizes data.” “A concept, abstraction, or thing with crisp boundaries and meaning for the problem at large.” Instance.

JA:	“An object is characterized by a number of operations and a state which remembers the effect of these operations.” Instance

WD:	“The primitive element of object-oriented programming is an object. ... an object retains certain information, and knows how to perform certain operations.” Instance.

MD:	An object is a data structure of a specified abstract data type. “...a class is a type, an object is an instance of a type. ...an object is a purely dynamic concept, which belongs not to the program text, but to the memory of the computer, where objects occupy some space at run-time once they [have] been created...”

EA:	“An object is a person, place, or thing. An object may be physical or conceptual.”

FA:	“An object corresponds to a concept, abstraction, or thing that can be distinctly identified. During analysis, objects have attributes and may be involved in relationships with other objects. [The authors do not maintain a distinction between ‘thing of interest’ and ‘abstraction representing thing.’] “The reader should note that the notion of object during analysis is different from that usually employed. Many methods permit analysis objects to exhibit dynamic behavior and have a method interface; this is not the case in [this method], where analysis object have no interface and no dynamic behavior.”

FD:	“During design, the notion of object is extended by the introduction of methods and object attributes.”

FC:	“In the implementation phase the notion of object is determined by the programming language.”

OA:	“An object is anything to which a concept applies. It is an instance of a concept.” ‘Object’ is used both for the model of a thing and for the thing itself.

BD:	“An object has state, behavior, and identity; the structure and behavior of similar objects are defined in their common class; the terms instance and object are interchangeable.”

‘Object’ is used both for the model of a thing and for the thing itself.

“...[S]ome things ... are distinctly not objects. For example, [some] attributes ... On the other hand, these things are all potentially properties of other objects.”

HA:	“An object is a particular instance of a class”.

NA:	An object is an instance of a class “built according to the description in [the] class.”

�2.1	operations

OODBTG Reference Model

Various object models embody various concepts of "object". All models consider an "object" to be an identifiable thing which plays a role with respect to a "request" for an "operation". The request invokes the operation which defines some service to be performed. From a user's viewpoint, an object may be a "recipient" of the request, a parameter in the request, or something returned as a result of the request.

There are two broad categories of object models, which we refer to as "generalized" and "classical object models." Classical models are, in many ways, subsets of generalized object models but they are founded on different metaphors.

"Generalized object models" do not distinguish a recipient from other request parameters. In generalized models, a request is defined as an event which identifies an operation and optional parameters. For example, an AddToInventory(part1, lot2, bin3) request does not give special significance to either the part, the lot, or the bin. These objects participate uniformly in the request.

"Classical" or "messaging object models" do distinguish a recipient. In classical models, a request is defined as an event which identifies and operation, a recipient, and optional parameters. Either the part, the lot, or the bin could be designed to be the recipient of the AddToInventory request. The request to a specific recipient is called a message. A common syntax places the recipient first: part1.AddToInventory(lot2, bin3).

The "protocol"5, or "interface", of an object describes the operations in which the object can participate. In classical models, the interface of an object includes the operations for which it can be a recipient. In generalized models, the interface includes operations for which the object can play the role of any parameter. The protocol completely specifies the behavior of an object but does not provide visibility to the implementation of the object's operations. Only operations specified in the protocol are allowed.

Objects may be static ("passive") recipients of requests or dynamic ("active") agents capable of such activities as sending requests.

5 Here, the term "protocol" is used as a synonym for "interface." This usage is different from the usage in communications.

OMG Core Object Model

4.2.1 Basic Concepts

 ...

Operations are applied to objects1. Thus, to determine a person's date of birth, the date_of_birth operation is applied to the appropriate person object. The relationship between a person and his/her spouse may be modeled as an operation spouse on one person object which returns another person object. The operations associated with an object collectively characterize its behavior.

 ...

1 This chapter speaks in terms of 'operations being applied to objects.' This same concept can be described as 'sending requests to objects.' For the purposes of the Core Object Model the two phrases mean the same thing.

4.2.5 Operations

An operation describes an action that can be applied to arguments. An operation invocation, called a request, is an event (like a procedure invocation or function call) that indicates an operation and possibly lists some arguments on behalf of a requester (client), possibly causing results to be returned. The consequences of a request can include:

1. An immediate set of results.

2. Side effects, manifested in changes of state.

3. Exceptions (currently not part of the Core Object model). An exception packages information indicating that some unusual event has occurred and passes that information to an exception handler.

Each operation has a signature. The signature includes the operation's name, list of arguments, and list of return values, if any. For example,

 operation_name (param-1, ..., param-n)

 returns (res-1, ..., res-m)

 param-i ::= parameter_name: parameter_type

 res-i ::= result_name: result_type

The Object Model does not describe the syntax of operation specification. For example, it does not specify how results are to be associated with variables. The above syntax is simply for illustrative purposes.

Formally, an operation W has the signature

w : (x1:s1, x2:s2,..., xn:sn) --> (y1:r1, y2:r2,..., ym:rm)

w is the name of the operation. The operation signature specifies n ≥ 1 parameters with names xi and types si, and m ≥ 0 results with names yi and types ri.

In the Core Object Model, operations are always specified with a controlling parameter. For discussion purposes this section will assume that the first parameter (x1) is the controlling parameter although the Core model does not require this. Each object type T Œ OTypes has a set of operations Ops(T) = {WT1 , WT2 ,...}.

An operation is part of the interface of its controlling parameter's type and the interface of all subtypes of that type (see section 4.2.6). An operation is defined on the type of its controlling parameter; for example, W is defined on s17. All operations defined on a type have distinct names. In the Core Model, an operation is defined on a single type (the type of the controlling parameter, so there is no notion of an operation independent of a type, or of an operation defined on two or more types8.

In the Core Object Model, operations can only be defined on object types, not on non- object types. The controlling parameter type may only be an element of OTypes. However, with the exception of the controlling parameter type s1, si and ri can be elements of OTypes » NTypes.

An operation may have side effects. The model does not distinguish a subcategory of operations that are side-effect free.

The Core Object Model does not address exception handling. Exceptions are intended to be introduced as a component and can therefore be included in profiles.

The Core Object Model does not specify anything about the execution order for operations. For example, whether or not clients issue requests sequentially or concurrently is not part of the Core Model. Furthermore, whether or not requests get serviced sequentially or concurrently is also not part of the Core Model. Although the Core does not specify support for sequential or concurrent operations, it does not preclude an implementation from providing such support.

The Core Model does not require support for atomic operation execution; nor does it preclude it. An implementation might chose to provide atomic operations in lieu of separate transaction_begin, transaction_commit, and transaction_abort operations.

In the Core Object Model, operations (definitions of signatures) are not objects. Requests (operation invocations) are also not defined to be objects.

The Core Object Model does not require a formal specification of the semantics of an operation, although it is good practice to include a comment that specifies the purpose of the operation, any side effects it has, and any invariants it is intended to preserve.

7 Note that 'defined on' does not refer to a lexical scope or context where the operation is syntactically specified.]

8 Requiring operations to be defined on a single type is sometimes referred to as the 'classical' object model. Relaxing this constraint to allow operations to be defined on zero or more types is called the 'generalized' object model. The Core Object Model is a 'classical' model.

OMG CORBA IDL

An operation is an identifiable entity that denotes a service that can be requested. An operation is identified by an operation identifier. An operation has a signature that describes the legitimate values of request parameters and returned results. The signature consists of a specification of parameters, the result of the operation, a specification of the exceptions that may be raised by a request and the types of parameters accompanying them, a specification of any contextual information and an indication of the execution semantics the client should expect [CORBA Specification 2.2.6 Operations].

ODMG

Operations are defined on types. The interface of a type includes operation signatures: argument names and types, possible exceptions, result types. The first argument of an operation is distinguished.

Operation names may be overloaded; dispatching is based on the most specific type of the first argument of the operation call. Operations may have side-effects; an operation with only side-effects can return a nil value. The model assumes operations will be executed sequentially.

Implications for optimization are that optimizers must be conservative since an operation in a query might have side-effects. They suggest a "pragma" distinguishing operations that can safely occur in query expressions.

�EXPRESS

Because it does not model dynamics, EXPRESS does not support much in the way of operations. The specification of constraints requires some support for operations, but these operations cannot change the state of the population being modeled. The operations include the builtin arithmetic, relational, logical, string, and aggregate operations. In addition, EXPRESS supports builtin and user-defined functions and procedures. It is likely that future versions of EXPRESS will provide significantly more support for operations.

Open Distributed Processing

ODP has specified construction models for each of its languages, these are specified at length in RM-ODP Part 3 - Prescriptive Model.

Management Information Model

Operations may be directed to managed objects and notifications may be emitted from managed objects. Operations and notifications apply across a managed object boundary and map onto underlying communications services, which for the purposes of systems management are the CMIS services defined in [ISO/IEC 9595].

All operations performed on a managed object are visible at the managed object boundary and can succeed only if consistency constraints of the managed object are not violated. An operation definition includes the direct effect of the operation on the managed object. In addition to the direct effects of an operation on a managed object, which are defined by the operation, indirect effects may also occur as a result of the relationships in the underlying resource.

There are two types of operations that may be directed to a managed object: attribute-oriented operations and object-oriented operations (described below). Notifications are information emitted from managed objects upon an occurrence of an event.

Attribute-oriented operations are applied to the attributes of an object, and their impact is generally confined to the modification of attribute values. The possible attribute-oriented operations are retrieve (get) an attribute value, set an attribute value, replace an attribute value with the default value and, for set-valued attributes, add and remove attribute values.

The operations that are valid for a particular attribute in a managed object are part of the package definition that references that attribute. Operations to retrieve attribute values map onto the CMIS M-GET service, while operations to set, replace with default, add and remove attribute values use the CMIS M-SET service.

Object-oriented operations are applied to the object as a whole. The possible object-oriented operations are create, delete, and action. The create and delete operations are used to create and delete specific instances of a managed object class; however, managed objects also may be created or deleted as side-effects of other normal resource operations. The create and delete operations use the CMIS M-CREATE and M-DELETE services, respectively.

An action is defined to elicit a specific response that is not obtainable through the use of the other operations. Action operations use the CMIS M-ACTION service. An action defines an operation that may be directed to a managed object to perform a specific operation. An action definition includes its behavior (optional), whether it is always confirmed or not, the syntax of any information (if any) in the action request or response, and any specific errors.

A notification defines information that may be sent when a managed object emits a notification as a result of an event. A notification definition includes its behavior (optional), the syntax of any information (if any) in the report or response, and any specific errors. Whether a notification is confirmed or unconfirmed is implementation dependent but also may be configurable by a manager (i.e., Event Forwarding Discriminator object class provides a mechanism [ISO/IEC 10164-5]). Notifications use the CMIS M-EVENT-REPORT service.

The syntax of the information in the request or response of actions and notifications is defined using ASN.1 notation [CCITT X.208, ASN.1]. It is possible to leave the syntax of these data fields as an open type, such that the syntax is specified using parameters when defining a managed object class containing the action or notification.

...An operation performed on a managed object can succeed only if the invoking managing system has the access rights necessary to perform this operation, and consistency constraints are not violated. ...Consistency constraints are specified as a part of the behavior definition of the attribute or managed object class definition. When performance of an operation, e.g., replacing an attribute value, would violate a defined constraint, the operation is not performed and a "failure in processing" indication is returned. [Part 1]

SQL3

Operations that may be invoked in SQL include defined operations on tables (SELECT, INSERT, UPDATE, DELETE), the implicitly defined functions defined for ADT attributes, and routines either explicitly associated with ADTs or defined separately.

Routines associated with ADTs are FUNCTION definitions for type-specific user-defined behavior. The FUNCTION definitions specify the operations on the ADT and return a single value of a defined data type. Functions may either be SQL functions, completely defined in an SQL schema definition, or external functions, defined in standard programming languages.

See also 2.4 specification of behavioral semantics, and 2.5 methods.

Matisse

The Matisse metamodel (the class CLASS) has methods and messages as attributes. The interface to a class consists of methods (or functions) attached to the class and messages which are used to invoke the methods.

C++

Operations are defined by functions. In the context of the C++ object model, functions may be globally defined (independently of object classes), or as part of class definitions (member functions). C++ essentially supports a classical object model, in that member functions are associated with the definition of a single object class. However, friend functions may be defined that, though not part of a class' definition, have access to the internals of instances of that class. See entry under 5. Encapsulation.

Smalltalk

An operation is the action(s) taken by an object instance as result of a message being received through the object’s interface. Messages requesting operations are addressed to specific recipient object instances, thus Smalltalk uses the “classical” object model and the method to execute in response to a message is determined by searching the object’s class hierarchy.

Eiffel

Eiffel operations are based on the classical object model. Each operation has a recipient, an operation (applicable to the recipient) and optional arguments.

Cecil

Cecil supports a generalized object model, in which objects can be made to behave like those in a classical object model if desired. See entry under 2.5 methods.

SELF

Operations are defined for objects by including slots containing method objects, as described under 2. Objects. To invoke operations, messages are sent to designated receiver objects; hence SELF supports a "classical" object model.

System Object Model (SOM)

The interface to a SOM object is defined by permitting the specification of operation signatures which consist of an operation name and the argument and result types. Operations are performed on methods which implement an objects behavior.

OLE Component Object Model

Operations resemble standard C++ functions, and are defined as part of interface definitions. Operations are always invoked indirectly, through interfaces, as described in the entry under 2. Objects.

Analysis and Design Methods

SD:	“An instance-based operation is one in which the caller of the operation supplies an instance of the underlying data structure... The operation then manipulates that data structure.” “Operations for which the caller does not supply a particular instance of the underlying data structure are known as class-based. Class-based operations include queries, iterators, and create operations.

CA:	

RA:	“A function or transformation that may be applied to or by objects in a class.”

JA:	“An instance of an actor does a number of different operations to the system.”

WD:	The term is used and taken as understood.

MD:	“Routines are the implementations of the operations of the instances of a class.”

EA:	“An action may be composed of one or more individual operations.” “An action may cause events, create or destroy objects and relationships, observe objects and relationships, and send or receive messages.”

FA:	“An input event and the effect it can have are called a system operation. At any point in time, only one system operation can be active.” System operations are invoked by agents in the environment of the system. “Note that all the operations in an operation model operate on the same global state.”

OA:	“An operation is a process that can be requested as a unit.” Operations carry out state changes. See 9.6 Other: Control Condition.

BD:	“An operation is some action that one object performs upon another in order to elicit a reaction.”

HA:	“Operations are services of a class that lead to changes in the state of an object of that class. Operations may be viewed as commands on the object; that is, requests for the object to do something. Operations should not return information about the outcome of the operation; this should only be visible via the services termed properties. “

NA:	“The only visible part of an abstract data type is its operations ...” “... [T]he term ... feature ... cover[s] both the operational aspects and the state aspects of class operations.”

�2.2	requests

OODBTG Reference Model

See entry under 2.1 operations.

OMG Core Object Model

4.2.6.3 Operation Dispatching

When an operation request is issued, a specific operation implementation (method) is selected for execution. This selection process is called operation dispatching. In the Core model, the process of selecting an implementation to invoke is based on the type of the object supplied as the controlling argument of the actual call11. The operation of the given name defined on the immediate type of the controlling argument is chosen for invocation. In some cases this can be done at compile time with no loss of flexibility, in others it must be delayed to execution time.

4.2.7 Argument Passing and Results

Consider an operation W with the signature

w : (x1:s1, x2:s2,..., xn:sn) --> (y1:r1, y2:r2,..., ym:rm)

An invocation (request) of W might be written as:

r1,..., rm <-- w (E1,...,En)

where w is the name of W, Ei are expressions providing the input arguments, and ri accept the return results.

The request is legal if the expressions E1,...,En evaluate to a1,...,an and the immediate type of ai £ si (£ is the subtype relationship). The signature guarantees that the request returns a set of results, b1,...,bm, and the immediate type of bi £ ri.

Note that if the types of the arguments or results of W belong to NTypes then the subtype check is defined by the component that defines the non-object types. In most cases this is likely to be type equality.

The execution semantics consists of binding arguments and return values to formal parameters. The expressions Ei result in either non-objects or OIDs (collectively dvals). Operationally, these dvals are copied into the formal parameters. How the effect of copying is accomplished is not specified, nor is it required that the OIDs be the same, only that the object they refer to be the same. The objects that the OIDs refer to are not copied. For example, consider the following operation specification and invocation:

operation X defined in Type T

 ...

 X (x: T)

X being invoked in some code

 ...

 X (a_T)

Following the invocation, x refers to the same object as a_T. Operation requests made to the OID in x will function exactly as if they had been made to the OID in a_T. It is not the case, however, that an assignment to x will change a_T (or even the object x refers to). In this sense, the Core Model defines a pass-by-value parameter passing semantics.

11 The single controlling argument restriction can be relaxed in a component and generalized to multiple argument dispatching.

OMG CORBA IDL

A request is an event, i.e. something that occurs at a particular time. The information associated with a request consists of an operation, a target object, zero or more actual parameters, and an optional request context [CORBA Specification 2.2.2 Requests].

ODMG

See 2.1 Operations.

EXPRESS

No notion of request.

�Open Distributed Processing

Computationally, supports requests

Management Information Model

Not applicable.

SQL3

SQL functions associated with ADTs are invoked using either a functional notation or a dot notation (the dot notation is syntactic sugar for the functional notation). For example:

BEGIN

 DECLARE r real_estate

 ...

 SET r..area = 2540; /* same as area(r,2540)

 SET ... = r..area; /* same as area(r)

 ...

 SET ... = r..location..state; /* same as state(location(r))

 SET r..location..city = ‘LA’; /* same as city(location(r),’LA’)

 ...

See also 2.4 specification of behavioral semantics.

Matisse

A message is a request for execution of a method.

C++

Class data members and member functions are accessed as if they were elements of a data structure. A request for access is given by specifying the name of an object (e.g., a reference) and the name of the operation, together with the appropriate parameters.

OOCOBOL

A request to execute a named method on a given object is called an invocation. Invocations may be specified in two ways. An in-line method invocation is indicated by two contiguous colon characters. For example, the following invokes method FOO of object OBJ, with parameter PARM:

 OBJ :: FOO(PARM)

An explicit invocation is specified using the INVOKE statement. An INVOKE statement similar to the above invocation would be:

 INVOKE OBJ "FOO" USING PARM RETURNING ANS

The INVOKE statement allows the name of the method to be invoked to be contained in a variable. In addition, parameters can be passed BY CONTENT (by value) or BY REFERENCE, and these options can be specified separately for each parameter in different INVOKE statements.

Smalltalk

A request is act of sending a message to an object’s interface with the expectation that the object will perform a known operation that is associated with the message.

Emerald

Emerald supports concurrency both between objects and within an object. Within a network many objects can execute concurrently. Within a single object, several operation invocations can be in progress simultaneously, and these can execute in parallel with the object's internal process (if it has one). To control access to variables shared by different operations, the shared variables and the operations manipulating them can be defined within a monitor [Hoa74]. Processes synchronize through built-in condition objects. An object's process executes outside of the monitor, but can invoke monitored operations when it needs to access shared state. [BHJL86]

See entry under 2.9 communication model for an example object definition.

SELF

See entry under 2. Objects.

System Object Model (SOM)

Client requests are invoked on objects by specifying the name of an object and the name of the operation along with parameters to invoke on it. An object can support multiple operations.

OLE Component Object Model

Requests resemble calls to C++ functions. However, functions are always called indirectly, through interfaces, as described in the entry under 2. Objects.

Analysis and Design Methods

SA:	Instances make requests by generating events.

CA:	Instances make requests via message connections. “A Message Connection is a mapping of one Object into another (or occasionally to a Class, to create a new Object), in which a ‘sender’ sends a message to a ‘receiver.’ to get some processing done.”

RA:	

JA:	An actor instance “inputs a stimulus, the use case instance executes and starts a transaction belonging to the use case.” See 2.10 events.

WD:	“When one object sends a message to another object, the sender is requesting that the receiver of the message perform the named operation, and (possibly) return some information.”

WD:	Rather than make requests, programs apply an operation to an object.

EA:	A request is one kind of interaction.

FA:	An input event is a request for a system operation.

OA:	“A means by which an operation is invoked. It consists of an operation name and zero or more actual parameters.” A request is issued to cause an operation to be performed.”

BD:	Instances make requests by sending messages or invoking member functions. The term used depends on the implementation language.

HA:	“... [T]he basic model of communication between objects is taken from Coleman et al. (1992). In this model, services are requested from a client object such that the provider of the service is directly named by the client. Information flow can be bi-directional such that the result of a request is returned to the client. The communication mechanism is synchronous. “

NA:	Objects ‘call’ or ‘invoke’ features upon objects. See 2.3 messages.

�2.3	messages

OMG CORBA IDL

Messages are not explicitly identified in the CORBA Specification.

ODMG

See 2.1 operations.

EXPRESS

No notion of messages.

Open Distributed Processing

Generally, messages are used in object interactions, but not explicitly identified. Rather, only the notion of interaction is identified.

Management Information Model

Not applicable.

SQL3

See 2.2 requests and 2.4 specification of behavioral semantics

Matisse

Messages are part of the Matisse metamodel and are used to invoke operations (methods).

C++

See 2.2 requests and 2.4 specification of behavioral semantics

�Smalltalk

A Smalltalk message is a request to an object instance to perform an operation. A message expression consists of a receiver, selector (message name), and potentially some arguments. The selector must be mapped to a method of the same name, encapsulated in the receiver object’s class hierarchy. The arguments, if any, are used by the method to perform its operation. Message syntax occurs in one of three forms: unary, binary, and keyword.

Unary Messages have no arguments.

Example — Inventory deltaFromYesterday

In this case, Inventory is a variable identifying the receiver object, and deltaFromYesterday is the selector.

Binary Messages have one argument.

Example — 2+3

In this case, the object "2" is the receiver, "+" is the selector, and "3" is the argument.

Keyword Messages have one or more arguments. The selector in keyword messages is composed of a keyword ahead of each argument. Keywords in messages are identified by a trailing colon.

Example with two keywords — CorporateBudget updateWith: $3000 on: ‘Travel’

In this case, CorporateBudget is a variable identifying the receiver object, and updateWith: on: is the selector.

Eiffel

Not applicable.

Cecil

All computation in Cecil is accomplished by sending messages to objects. Method lookup in response to a message is constrained by argument specializers defined for the methods (see 2.5 methods). Informally, a message is considered as being sent to all its argument objects. When a message is sent, the system finds all methods with the same name and number of arguments as the message. The system then eliminates from consideration those methods whose argument specializers are too restrictive to apply to the actual parameters passed in the call (if no methods are applicable after this step, a "message not understood" error is reported). Of the remaining applicable methods, the system locates the one whose argument specializers are most specific, and invokes that method to respond to the message. If no single method is most specific, a "message ambiguous" error is reported (i.e., Cecil does not attempt to resolve ambiguity itself). [Cha92]

SELF

See entry under 2. Objects.

System Object Model (SOM)

Messages are not explicitly identified in SOM.

Analysis and Design Methods

SA:	There is no explicit concept of messages. Instances generate events for themselves or other instances. Events carry parameters.

CA:	See 2.2 requests. “...each Message Connection represents values sent within the context of a particular service need, and a response received as a result.”

RA:	There is no explicit concept of messages. Instances generate events for themselves or other instances. Events carry parameters.

JA:	“The dynamics in an object-oriented model is created through the dynamic relations, by means of objects [instances] sending stimuli to other objects. We denote by the concept stimulus the event when an object communicates with another object. In a programming context, the word ‘message’ is often used instead, but in order to avoid the message-semantic, we use the stimulus concept.”

WD:	“A message consists of the name of an operation and any required arguments.”

MD:	The term ‘message’ is not used. Routines are applied to objects. The routines may have parameters.

EA:	“The most common type of interaction among objects is communication.” “Two objects communicate when one object sends a message to another object. ...[M]essages are tangible or intangible objects transmitted in an interaction.”

FA:	“A system operation is always invoked by an [external] agent, not an object; the analysis phase is not concerned with internal messaging between objects.”

FD:	“Message passing is a directed point-to-point communication, and is realized as a function or method call.” “A message may involve bi-directional data flow when the invocation of a method returns a value.” “When a message is sent to an object it results in the invocation of a method. The method call completes before control is returned to the caller. If the invoked method also sends messages to other objects, the methods that are invoked must all complete before the initial invocation completes.” “The object interaction graph defines the sequence of messages that occur between a collection of objects to realize a particular operation.”

OA:	“Messages ... are a more restricted case of requests. A message supplies only one object in its request for an operation along with any number of object parameters. A request is not limited to one object it requests for an operation.”

BD:	“The terms message, method, and operation are usually interchangeable.” See 2.1 operations.

HA:	“Message are the triggers for activating services. Messages are instantaneous in time.” “Once a message is received, the appropriate service is activated.”

NA:	“Message[:] A feature call.” “[W]e switch freely between the message passing metaphor and the feature call metaphor (objects invoking operations on each other) ...” “[S]ending a message to an object, calling a class feature, or invoking an operation on an object ... always mean the same thing.”

�2.4	specification of behavioral semantics

Object models differ in how and to what extent the behavior of objects is specified. Most object models limit the declarative specification of object behavior (operations) to the specification of a signature for each operation. The signature consists of the name of the operation, and the argument and result types. The semantics of the operations are often defined operationally (by means of the code of the methods provided to implement the operations). Other object models allow declarative specification of behavioral semantics, in the form of invariants that should be preserved by all operations, pre- and post-conditions for operations, other forms of constraints on the operations' behavior, or by a declarative specification of the methods themselves. These models specify behavioral semantics in a precise and implementation-independent manner. Some of the models use formal notations based on mathematics (like Z, Object Z, LOTOS, etc.) for doing so. These formal specifications may be translated into stylized English, in order to enhance their understanding by customers who are not mathematically-trained. See also entries under 2.1 operations.

Editor's note: Since we changed the heading from "interaction models" to "specification of behavioral semantics", some of the following entries must now be updated. The former feature 11. Integrity Constraints has been merged with this feature.

OODBTG Reference Model

The encapsulation characteristic makes it possible to define consistency rules as part of the object definition that are enforced by the system. These consistency rules are known as "integrity constraints". Integrity constraints can be defined in several ways including:

 o informally, in natural language or in an informal specification language. Such integrity constraints cannot be enforced.

 o as procedures, in an object manipulation language. These may include "triggers" and " before- and after-methods".

 o as "assertions", in a predicate-based language. Important kinds of assertional integrity constraints include: "preconditions" and "postconditions", and invariants".

"Preconditions" and "postconditions" are Boolean expressions associated with an operation which specify the PREcondition which should be TRUE immediately before execution of the operation and the POSTcondition which should be TRUE as a result of its execution, i.e., immediately after execution of the operation. If the precondition or postcondition is not true, the operation results in an error. A precondition and a postcondition together constitute a contract that can be used to specify an operation.

"Invariants" are operation-independent conditions associated with a collection of classes that must be true at all times NOT within an operation on those classes. The concept of class-level invariants can be used to provide a means of defining concepts like "relationships" and "containment."

Examples of some important kinds of integrity constraints include:

 o Only pre-specified operations should be allowed on objects; i.e., the protocol of objects should be enforced.

 o Constraints may be expressed on the allowed types of operands and results of operations and on the allowed types of values for properties of objects.

 o Uniqueness constraints may be expressed on values of a property, across the domain of instances of a class, or across members of some collection.

 o Referential constraints, including rules governing identity and existence, are enforced. These include rules governing creation of object identifiers and rules that insure that referenced items exist.

Constraints may apply to all instances of a class, or only to specific instances. Depending on the database system, constraints may be automatically enforced at run-time, may be enforced at compile time, and/or may be performed only when a particular request is sent or when some system event occurs (e.g., transaction commit).

In addition, one of the principles for creating class libraries is that operations, assertions, or invariants can be jointly shared by more than one class in a library. In this manner, associations between classes and their integrity rules may be specified.

OMG CORBA IDL

The CORBA specification does not specify the behavior of objects. It defines interfaces and allows interfaces to be defined in terms of operation signatures. These operations can be invoked on objects resulting in methods being dispatched which execute the service requested by the operation. The behavior of the object is defined by the methods that implement the objects behavior. The actual semantics of an objects implementation is defined by the object implementer and is outside the scope of the CORBA specification.

ODMG

Object behavior is modeled through operations (see 2.1 Operations). An operation signature (part of a type specification) specifies argument types, result types and exceptions that can be raised. "There is no formal specification of the semantics of an operation" (p. 25).

EXPRESS

EXPRESS provides for the specification of constraints on the population and its members, but does not support any other behavioral specifications. It is likely that future versions of EXPRESS will support behavioral modeling.

Open Distributed Processing

Behavior (of an object) is defined as follows" "A collection of actions with a set of constraints on the circumstances in which they may possibly occur. The nature of the constraints which may be expressed depends on the specification language in use. In general, there exists a set of possible sequences of observable actions consistent with any given behavior. A behavior may include internal actions. The actions that actually take place are restricted by the environment in which they object is placed. (part 2). The set of all sequences of operations that can occur from the initial state based on legal state transitions determined by the pre-conditions and post-conditions of the operations. (part 4).

Part 4 of the Reference Model for Open Distributed Processing describes how architectural semantics of the Prescriptive Model (Part 2) may be specified using several formal description techniques. These descriptions provided a very useful feedback for clarifying corresponding Clauses of Part 2.

Integrity constraints are considered a property of the model generated for the Information Language. Constraints are special relationships, where each relationship is associated with a predicate.

Management Information Model

Part of the definition of a managed object class is behavior. The behavior can define:

(a) the semantics of the attributes, operations and notifications;

(b) the response to management operations being invoked on the managed object;

(c) the circumstances under which notifications will be emitted;

(d) dependencies between values of particular attributes, which must be expressed in a way that takes account of the possible presence or absence of conditional packages;

(e) the effects of relationships on the participating managed objects;

(f) consistency constraints on attributes;

(g) preconditions that identify the conditions when operations and notifications can be assumed to have valid meaning;

(h) postconditions that identify the results of the processing of a management operation or the emission of a notification;

(i) invariants that are in effect for the entire lifetime of the managed object and that describe conditions that are true for an operation of the managed object;

(j) synchronization properties of the managed object. [Part 1]... The behavior <of a relationship> specified by means of the invariant defines, in particular, any dependencies this relationship class has on other relationship classes. [US Comments]

Behavior definitions specify behavioral aspects of managed object classes as a whole and also those specific to their characteristics (e.g., packages, attributes, actions, notifications, parameters, etc.). Behavior definitions are essential to the understanding of an information model and are intended to supplement the more formal specifications (i.e., template definitions) for which the behavior is provided.

A behavior definition is a string of text (that may be delimited) specifying the behavior of the managed object class. The most commonly used delimiters include double quotes (") and exclamation points (!). NOTE: It is strongly recommended that specification authors use delimited text to facilitate machine parsing and human readability.

The behavior definitions are intended to provide a wide variety of information, including, but not limited to, invariants for the managed object, preconditions and postconditions for performing operations on the managed object, attribute usage restrictions, integrity constraints between attributes of the same object or interactions with other managed objects, instantiation rules, and rules for conditional package inclusion.

The text of a behavior definition may also include a reference to another part of the same document or to another document. The current approach is to specify a behavior definition using text, although a formal description language, such as [Z], [LOTOS], or [ESTELLE] may be used in the future. The use of formal description languages in the context of OSI/CMISE information models is currently under consideration as a new work item in ISO. This will provide a precise method to specify the semantics associated with an OSI/CMISE information model just as the syntax associated with an OSI/CMISE information model is currently specified using ASN.1 [CCITT X.208, ASN.1].

Part of the definition of a managed relationship class is a relationship description which can be used to describe:

(a) invariants: the consistency constraints that are in effect for the entire lifetime of the relationship. These are the constraints that must be maintained among the participants of the managed relationship....

(b) pre-conditions for operations: the conditions that must be met before invoking operations that are used to manage the managed relationship...

(c) post-conditions for operations: the conditions that must be met immediately following the operations that are used to manage the managed relationships... [GRM 93, Clause 7.1.2]

For a formal technique to be appropriate for the description of managed objects, it must fit into the framework prescribed in the standards. This means that the method must deal with operations as a key concept. The method must be able to handle inheritance, and it must be compatible with ASN.1 data descriptions. Also, for a formal technique to be useful and appropriate for use in standards, it must be based on mathematical concepts and have a well-defined meaning or semantics. ... The appropriateness of a method depends very much on the application. For the description of formal methods from the criteria outlined above, we conclude that a logic-based method seems most suitable. ... Since inheritance is important, object-oriented flavors of either VDM or Z would be most suitable for this task. Standardization of the methods, including the object-oriented extensions, is also necessary. Since Z is gaining popularity more quickly than VDM, we recommend that the standards bodies choose an object-oriented version of Z, such as Object-Z, for the formal description of managed objects and managed relationships. [SMI Rapporteur Group 93]

See [X3T5.4] 1.1., 4., 9.4., 9.5. <where invariants, preconditions and postconditions are proposed and used for defining behavior>

SQL3

Routines (procedures and functions) that define aspects of the behavior of the ADT may be encapsulated within the ADT definition (these routines have access to the ADT's PRIVATE attributes; routines may also be defined outside an ADT definition). A number of these routines have predefined names. For example, when an ADT is defined, a constructor function is automatically defined to create new instances of the type. The constructor function has the same name as the type and takes zero arguments. It returns a new instance of the type whose attributes are set to their default values. The constructor function is PUBLIC. For every attribute, observer and mutator functions are also automatically defined (these functions may also be explicitly defined by the user). These functions are used to read or modify the ADT attribute values. EQUAL and LESS THAN functions may be defined to specify type-specific functions for comparing ADT instances. RELATIVE and HASH functions can be specified to control ordering of ADT instances. CAST functions can also be specified to provide user-specified conversion functions between different ADTs.

Other routines associated with ADTs include function definitions for type-specific user-defined behavior. ADT function definitions return either BOOLEAN, if the result is to be used as a truth value in a Boolean predicate, or a single value of a defined data type, if the result is to be used as a value specification. Functions may either be SQL functions, completely defined in an SQL schema definition, or external function calls to functions defined in standard programming languages.

See also 2. Objects and 2.5 methods.

Matisse

Objects stored on disk contain a reference to methods and messages which invoke them. The object code of a method is stored on the client workstation and executes on the client (except for certain operations which will occur on the server for performance optimization). Operations are function calls which execute on the client. Method object code can be generated from any language.

Referential integrity is automatically maintained by the database by automatic support of inverse linkages between objects. Attributes, relationships, and classes all have user specified constraints. In addition, since Matisse supports pre- and post-condition triggers on all attributes and relationships, any computable user constraint can be implemented.

C++

The behavior of a C++ object is defined by its member functions. (see 2.1 Operations and 2.5 methods). A definition of a member function specifies argument types and the result type. There is no formal specification of the semantics of an operation; the semantics are specified by the code of the member function.

Smalltalk

Behavior in Smalltalk is defined by methods specified in classes which are implemented as class instances and execution is triggered in those instances by message requests.

A set of standard classes having common behavior across all Smalltalk implementations is being proposed by the X3J20 Smalltalk Language Technical committee. Many of them are already implemented by Smalltalk suppliers. These methods fall into categories where common behavior is inherited by object instances, classes, collections, associations, streams, basic geometry, or file I/O.

Eiffel

Behavioral semantics of objects can be specified in two ways: first by the signature of the operations and secondly by assertions in the form of preconditions, postconditions and a class invariant.

The signature of an Eiffel operation specifies the name of the operation, any formal parameters (including their types) and optionally the type of a return result.

Assertions are used to specify contracts between two objects. The object using an operation of another is called a client while the object providing the operation is the supplier.

Assertions in Eiffel are boolean expressions that must evaluate to true. The expressions may refer to any operation or attribute within the class and also any actual parameters passed to the operation.

The part of the contract binding on the client is the precondition. A precondition specifies the conditions in which an operation can be called. This may be requirements for the object to be in a particular state or for particular values of actual parameters.

The operation must abide by the postcondition. i.e.,. the postcondition is binding on the supplier. A postcondition may refer to the value of entities prior to the execution of the operation. This can be used to compare `old' values with new values.

The class invariant is used to specify general consistency constraints on an object.

The properties of a loop can also be specified using assertions. Loop variants and invariants can specify that each iteration of the loop will make some progress towards the termination condition and values that must be maintained during each iteration of the loop (invariant).

Finally additional arbitrary properties of objects and their operations can be specified using assertions in the form of `check' statements. Whereby the assertion(s) in a check statement will be evaluated when the statement is reached.

The failure of an assertion causes an exception. Exceptions may be handled in two of ways: an attempt to fix the problem, or failure. An operation must either succeed in its execution or fail. A failure in an operation causes an exception in the caller.

Operations may attempt to fix the problem by catching the exception in a `rescue' clause. The rescue clause may try to adjust the state of the object so that it is correct and then either retry the operation or fail.

SELF

Behavior in SELF is defined by specifying the corresponding methods. There are no types or classes in SELF, and therefore no separate specifications of operation signatures or other descriptive information about behavior.

System Object Model (SOM)

SOM defines object behavior by permitting the specification of operation signatures which consist of an operation name, and the argument and result types. The semantics of the operations on an object are defined by the methods that implement these operations.

Analysis and Design Methods

SA:	The model uses diagrammatic and declarative specification of behavior. Behavior of instances is specified in a four step process. A Moore state diagram [E.F. Moore, “Gedanken-experiments on Sequential Machines.” in Automata Studies, Princeton: Princeton University Press, 1956.] is prepared for each (interesting) class; the behavior of an instance on entry to each state is described with text; a data flow diagram is prepared for each state, showing in more detail the behavior on entering the state; each process of the data flow diagram is further specified with text.

The model allows for both synchronous and asynchronous interaction.

The model uses constraints common to entity relationship diagramming.

CA:	The model uses diagrammatic and declarative specification of behavior. A state diagram is prepared for each class. Behavior of services is specified by ‘service charts,’ a form of flow chart, with behavior further specified by preconditions, triggers, and text blocks.

The model uses constraints common to entity relationship diagramming.

RA:	“The dynamic model shows the time-dependent behavior of the system and the objects in it.” It consists of ‘event traces’ and state-transition diagrams. “The functional model shows how values are computed, without regard for sequencing, decisions, or object structure.” It is “a model of those aspects of a system concerned with transformations of values--functions, mappings, constraints, and functional dependencies.” It consists of data flow diagrams. [It is unclear, but the diagrams appear to be organized by functional decomposition.]

“Constraints are functional relationships between entities of the object model. The term entity includes objects [instances?], classes, attributes, links, and associations. A constraint restricts the values that entities can assume. ... We favor expressing constraints in a declarative manner. ... Object models capture some constraints through their very structure.”

JA:	“The use case model uses ‘actors’ and ‘use cases’ to specify behavior. When an [actor] inputs a stimulus, the use case instance executes and starts a transaction belonging to the use case. This transaction consists of different actions to be performed.” The behavior is specified in natural language. “A use case class is a description. This description specified the transactions of the use case. The set of all use case descriptions specifies the complete functionality of the system.”

WD:	A brief description of each method is provided in natural language; the collaborations required are noted.

MD:	One “... may associate with an element of executable code [or an element of a design] -- instruction, routine, class -- an expression of the element’s purpose. Such an expression (which states what the element must do, independently of how it does it) will be called an assertion... Mathematically, the closest notion is predicate, although the assertion language [used] has only part of the power of full predicate calculus.” “The task performed by a routine may be specified by two assertions associated with the routine: a precondition and a postcondition.” “A class invariant is ... a list of assertions, expressing general consistency constraints that apply to every class instance as a whole; this is different from preconditions and postconditions, which characterize individual routines.”

EA:	“[W]e use state nets to model object behavior. A state net is a configuration of symbols representing states and state transitions for all objects in a particular object class. We consider a state net to be a ‘behavior template’ that specifies the expected behavior for instances of an object class. When we associate a state net with an object class, we declare that every instance of the object class has the behavior described by the state net.”

“To describe a system more satisfactorily ... we often wish to state additional properties ... by imposing constraints.” The model includes a number of named kinds of constraints, each with its own form of expression. “Users of the [model] may write general constraints as they wish. A formalist may prefer some variation of predicate-calculus notation, whereas others may prefer a concise natural language characterization.”

FA:	“The operation model specifies the behavior of system operations declaratively by defining their effect in terms of changes of state and the events that are output” “...using preconditions and postconditions... The precondition characterizes the conditions under which a system operation may be invoked The postcondition describes how the system state is changed by a system operation and what events are sent to agents.” “The operation model specification says nothing about the intermediate states through which the system passes while the operation is active. These states are dependent on the way the operation is implemented and are therefor not the legitimate concern of the analyst.” “The effect of invoking an operation when the precondition is false is undefined.” “... the semantics of the object models are defined, but only informally.” See 11. Object Languages.

“A cardinality constraint restricts the number of objects which may be associated with each other in a relationship.” The “... total marker ... indicates that the objects in the adjacent class must appear in the relationship.”

“An invariant is an assertion that some property must always hold. ... They are expressed as textual notations.”

FD:	“A description of the method is given by text in the data dictionary.” “Each method can then be considered in turn to design how it should be decomposed into suboperations.” “Sequencing information can be explicitly show by introducing sequence labels in parentheses above the message name [in an object interaction graph]. ... “Decorations on sequencers ... [indicate] conditional selection in a method responsible for sending the message.... [Graphs may also indicate repetition of a message, that is zero or more messages are sent. ... [M]essages with the same sequence label occur in an unspecified order... Messages with no sequencer occur in any order.”

FC:	The method “permits anything [author’s emphasis] to happen when a precondition is violated. This grants implementors the freedom to do anything they like...”

OA:	“Behavioral specification tends to be represented in two basic ways—state-related and nonstate-related. ... The two primary forms of state-related approaches are finite-state machine and scenario specification. The two primary forms of state-related approaches include decision-based specification and language.” Pre-and postconditions are another alternative discussed.

Constraint “A constraint is a property that is always expected to be true ... and is usually categorized as being structural or behavioral in nature.” Types of constraint are distinguished and discussed in detail.

Rule “Rules are declarations of policy or conditions that must be satisfied.”

BD:	The model uses diagrammatic and declarative specification of behavior. Scenarios are described, are elaborated as scripts, and responsibilities are stated, all in natural language. State transition diagrams, interaction diagrams, and object diagrams are used to “illustrate ... the semantics of mechanisms in the logical design.” “... [T]o a large degree, an interaction diagram is simply another way of representing an object diagram.” Interfaces and data structures are defined in the implementation language.

Constraints are indicated by “an expression ... adjacent [on a diagram] to the class or relationship for which the constraint applies. ‘Invariant,’ ‘precondition,’ and ‘postcondition’ are mentioned once briefly but not further used.

HA:	‘Behavior’ is used as a synonym for ‘service. ‘ Services also have a protocol and a contract. Behavior of object classes is described by ‘objectcharts’; behavior at the subsystem level are described by scenarios/use cases and event models.

NA:	“The precondition states a predicate that must be true when the feature is called by a client.” “The postcondition states a predicate that must be true when the feature has been executed.” “The class invariant [a predicate] must be satisfied before and after execution of any public feature of the class.” Thus is behavior specified.

�2.5	methods (including multimethods and method combinations)

OODBTG Reference Model

A "method" provides the implementation of an operation for certain objects. Different objects may have different methods for the same operation.

In the classical object model, a method is considered to implement the interfaces of operation recipients, but not the interfaces of other parameters. In generalized models, a method is considered to implement the interfaces of all parameters.

OMG CORBA IDL

Code that is executed to perform a service is called a method. When a client issues a request, a method of the target object is called. The input parameters passed by the requester are passed to the method and the output parameters and return value are passed back to the requester [CORBA Specification 2.3.1 The Execution Model: Performing Requests].

ODMG

Operations (declared in the interface) are implemented by methods defined in the type implementation. Each operation is implemented by a method, plus there may be additional methods defined.

EXPRESS

No methods supported, but planned for version 2.

Open Distributed Processing

Treated as a hidden property of a Technology Language object. That is, methods are considered implementation-only related properties of an object.

Management Information Model

Not applicable.

SQL3

An SQL routine is basically a subprogram. A routine may be either a FUNCTION or a PROCEDURE. A routine reads or updates components of an ADT instance or accesses any other parameter declared in its parameter list. A routine is specified by giving its name, its parameters, a RETURNS clause if it is a function, and a body. A parameter in the parameter list consists of a parameter name, its data type, and whether it is IN, OUT, or INOUT (for functions, the parameters are always IN; the RETURNS clause specifies the data type of the result returned).

A routine may be either an SQL routine or an external routine. An SQL routine has a body that is written completely in SQL. An external routine has an externally-provided body written in some standard programming language. If the function is an SQL routine, its body is any SQL statement, including compound statements and control statements (see 11. Object Languages). A number of new statement types have been added in SQL3 in order to make SQL computationally-complete enough so that ADT behavior can be completely specified in SQL.

Matisse

Methods are part of the Matisse metamodel. They are functions attached to objects which are invoked by messages.

C++

The behavior of a C++ object is defined by its member functions. All objects of a particular class share the member functions for that class. Every member function for a class must be declared with a function prototype in the class declaration. This prototype lists the arguments for the member function. C++ adds an additional argument, this, to the beginning of the argument list for every member function. The this argument is a pointer to the individual object for which the member function is being called (and is similar in some respects to self in Smalltalk). The this argument is implicit; it does not have to be explicitly included in the function's argument list, nor does it have to be provided when the function is called.

The keyword virtual preceding a member function declaration indicates that the function can be redefined in classes derived from the current class (subclasses). A virtual member function for a class is called through a jump table associated with the class. This allows a derived class' member function to be correctly called even when the variable used to access it is declared as being of a base type. Non-virtual member function calls are bound at compile time. The derived class member function can invoke the base class member function if this is required.

The keyword static preceding a member function declaration indicates that the function has no this pointer. Static member functions (for example) provide a way to access static data members without needing an actual instance of the class (static data members are data members shared by all instances of the class; these would be equivalent to the instance variables of a Smalltalk class object). A static member function can access nonstatic members of its class only if passed an instance of the class (using the . or -> member access operators to refer to the particular member).

OOCOBOL

The procedural code in an object is placed in methods. Each method has its own method-name and its own Data Division and Procedure Division. When a method is invoked, the procedural code it contains is executed. A method is invoked by specifying a reference to the object and the name of the method. A method may specify parameters and a returning item. Data defined within a method is local to that method.

The structure of a method definition is:

IDENTIFICATION DIVISION.

METHOD-ID. method-name-1

 { PUBLIC }

 IS { RESTRICTED } [PROTOTYPE] [OF [CLASS-OBJECT OF] class-name-1]

 { PRIVATE }

[Method Environment Division]

[DATA DIVISION.

Method Data Definitions]

[PROCEDURE DIVISION

 [{{ INPUT } }]

 [USING {{ OUTPUT } data-name-1 } ...] RETURNING data-name-2].

 [{{ I-O } }]

Method Procedure Statements]

END METHOD method-name-1.

Smalltalk

A method is the executable code rendered in the class and executed in the context of an object instance. It defines how to perform an operation in the object instance. It is made up of a message pattern that is used to match against incoming messages, temporary variables, and a sequence of instructions. A method execution is triggered when message is received that matches the methods’ message pattern.

Cecil

In Cecil, a method declaration has the general form

method name(x1@obj1:type1,...,xn@objn:typen): typer {body}

There is no implicit self formal argument; all formal arguments of a method are listed explicitly. A method specifies the kinds of arguments for which its code is designed to work. For each formal argument of a method, the programmer may specify that the method is applicable only to actual arguments that are implemented or represented in a particular way, i.e., that are equal to or inherit from a particular object, called an argument specializer (recall that Cecil is prototype-based (classless), and thus objects inherit from other objects, rather than classes inheriting from classes). In the declaration above, the obji represent argument specializers.

As indicated by the syntax above, argument specializers are distinct from type declarations. Argument specializers restrict the allowed implementations of actual arguments, and are used as part of method lookup to locate a suitable method to handle a message send (see entry under 2.3 messages). On the other hand, type declarations require that certain operations be supported by argument objects, but place no constraints on how those operations are implemented. Type declarations have no effect on method lookup.

Argument specializers are optional, and zero, one, or several (or all) of a method's arguments may be specialized. If zero arguments are specialized, the method acts like a conventional undispatched function or procedure. If only the first argument is specialized, the method acts like a normal singly-dispatched method in a language such as Smalltalk. If several arguments are specialized, the method is a multi-method (a method selected on the basis of more than one argument) as supported in a language such as CLOS. Callers which send a particular message to a group of arguments need not be aware of the collection of methods that might handle the message or which arguments of the methods are specialized, if any. Methods may be overloaded, i.e., there may be many methods with the same name, as long as the methods with the same name and number of arguments differ in their argument specializers. Methods with different numbers of arguments are independent; the system considers the number of arguments to effectively be part of the method's name.

Methods and objects are effectively connected through the methods' argument specializers. The methods in the system with the same name have no explicit connection or relationship beyond the programmer's intentions. This is in contrast to the approach used, e.g., in CLOS, of linking all multi-methods with the same name into a single generic function object. In Cecil, methods are closely associated with their specializing objects (i.e., the objects whose implementations include the methods), and only weakly connected with each other. This approach to multi-methods permits viewing objects and their connected methods as a unit which implements a data abstraction; the methods defined for a particular object are always directly accessible from the object. The mental image required is that of a graph of relationships among objects and methods. Consequently, Cecil requires a graphical interactive programming environment that can display these relationships and dynamically-varying views of them. For example, this environment could show objects on the screen, with their associated multi-methods "contained" within the objects. The same multi-method could be viewed from each of its specializing objects.

The following group of object declaration skeletons illustrate a simple (instance) inheritance hierarchy, together with some differently-specialized method definitions [Cha93]. These illustrate how methods implementing the "+" (addition) operator can be specialized to work on different combinations of argument implementations.

object int inherits number;

method +(@int, @int) {abstract} [* children must provide implementation]

object small_int inherits int, prim_int;

method +(x@small_int, y@small_int) {*code of method*}

method +(x@small_int, y@big_int) {*code of method*}

object big_int inherits int;

method +(x@big_int, y@big_int) {*code of method*}

method +(x@big_int, y@small_int) {*code of method*}

object zero inherits int;

method +(@zero, x) {x} [*zero plus x is x]

method +(x, @zero) {x}

method +(z@zero, @zero) {z}

SELF

See entries under 2. Objects, and 2.1 operations.

�System Object Model (SOM)

Methods are invoked on SOM objects. Methods can be relocated upward in the class hierarchy without requiring the client to be re-compiled. SOM supports three different method dispatching mechanisms; offset, name resolution, and dispatch function resolution.

The "offset resolution" mechanism implies a static scheme for typing objects and is roughly equivalent to the C++ virtual function concept. It offers the best performance characteristics for SOM method resolution at a cost of some loss in flexibility.

This form of method resolution supports polymorphism that is based on the derivation of the object's class.

Name resolution supports access to objects whose class is not known at compile time, and permits polymorphism based on the protocols that an object supports, rather than its derivation.

The "dispatch function" resolution is a feature of SOM that permits method resolution to be based on arbitrary rules known only in the domain of the receiving object.

Dispatch function resolution is a completely dynamic mechanism that permits run time type checking, and open-ended forms of polymorphism.

A distinguishing feature of SOM is that all 3 forms of method resolution are complementary and can be intermixed within client programs.

OLE Component Object Model

Methods in the Component Object Model are essentially equivalent to C++ member functions.

Analysis and Design Methods

SA:	The concept ‘method’ is not used in analysis.

CA:	Service. A Service is a specific behavior that an object is responsible for exhibiting. It is possible for the receiver of a message to return a result and then continue to take ongoing action. A service can have trigger and terminate constraints, so that it can activate itself without the need for a message to be sent to it.

RA:	“A method is the implementation of an operation for a [particular] class.”

JA:	The concept ‘method’ is not used in analysis. However, “[e]ach object [instance] is able to receive a specified number of stimuli. The object interprets this stimulus and performs an operation or, perhaps, directly accesses a variable. In Smalltalk, this stimulus is called a message and the operation executed as a result of receiving a message is called a method.”

WD:	“A method is a step-by-step algorithm executed in response to receiving a message whose name matches the name of the method.”

MD:	The term ‘method’ is not used. The features of classes include routines, which may be procedures or functions.

EA:	The term ‘method’ is not used in this method of analysis.

FA:	“The analysis concept of object does not include any notion of method interface. Methods are the means whereby objects communicate to perform some task. In the analysis phase, we concentrate on specifying what task a system has to perform. Discussion of object communication is postponed to the design phase.”

FD:	“When a message is sent, the receiver invokes the corresponding method in the interface. [The appearance in an object interaction graph of a] message m to a server object C means that all objects of class C will include a method corresponding to m in the method interface. Each method invocation may alter object attributes and return a result. “

OA:	“A method is a processing specification for an operation.” “An operation may

have more than one method defined for it.”

BD:	“The terms message, method, and operation are usually interchangeable.” See 2.1 operations.

HA:	“A method implements a service by calculation (as opposed to storage).”

NA:	Not used. Defined as: “Method (of a class)[:] A class feature.” [‘Method’ is used by the authors in the sense of ‘a method of analysis and design.’]

�2.6	state

OODBTG Reference Model

Some operations alter the behavior of future requests. For example, if the ContainsPart operation returns TRUE or FALSE depending on whether a certain bin contains a certain part, then the result of ContainsPart(bin1,part2) may be changed by the request StoreInBin(bin1,part2).

The general concept of "state" concerns the information that must be remembered when a request alters the future behavior of other requests. Some models equate state with structural "attributes", i.e., state consists of the current values of attributes. In other models state may be defined as the results returned by certain operations, or state may not be precisely defined.

OMG Core Object Model

4.2.1 Basic Concepts

 ...

State is required in an object system because it captures the information needed to affect operations. For example, the operation marry takes two person objects as input arguments and produces side effects on these two objects. State captures these side effects, and, presumably, a subsequent application of the spouse function to either object will now yield a different result from what it did before. In the Core Object Model, operations are used to model the external interface to state. Attributes and relationships, which can be used to model the externally visible declarations of state more succinctly, are currently defined in the OMG OM Components Guide.

 ...

Editor's note: the OMG OM Components Guide exists in draft form only.

4.2.8.1 Example type interface

 ...

The Core Object model does not formally define state but acknowledges that the execution of some operations may affect the way the same operation or other operations behave in the future.

OMG CORBA IDL

The state of CORBA objects is accessed through IDL defined interfaces to the object. Invoking operations on objects may cause state changes.

ODMG

State is modeled by the properties of an object. A property can be an attribute or a relationship. The attributes and relationships of an object are defined as part of the type interface. Attributes take literals as their values; relationships can only be defined between two nonliteral object types.

EXPRESS

In a sense, EXPRESS models only state; in another, it has no need of state since it has no concept of state change.

Open Distributed Processing

An object is characterized in RM-ODP Part 2 by its behavior and, dually, by its state.

State is defined in RM-ODP Part 2 as the condition of an object that determines the set of all sequences of actions in which the object can take part. Since, in general, behavior includes many possible series of actions in which the object might take part, knowledge of state does not necessarily allow the prediction of the sequence of actions which will actually occur. [In other words, a given state may imply the truth value of preconditions for several different actions. In accordance with RM-ODP Part 4, legal state transitions are defined by the preconditions and postconditions of the operations.] State changes are effected by actions; hence a state is partially determined by the previous actions in which the object took part. An object is encapsulated, i.e. any change in its state can only occur as a result of an internal action or as a result of an interaction with its environment.

To be more specific, Part 4 of RM-ODP defines state as the values of the variables declared in the state schema associated with the class schema of which the object is an instance. (Part 4).

Management Information Model

Some state attributes have been defined for managed objects in [ISO/IEC 10164-2]. The three primary state attributes are the operational state (valid values are enabled and disabled), administrative state (valid values are locked, unlocked and shutting down) and usage state (valid values are idle, active and busy). These state attributes may be used in managed object class definitions.

�SQL3

SQL3 supports state in the form of the values of the various SQL3 data types. For example, the state of an ADT instance is the ordered sequence of stored components of an ADT instance; the state of a row is the ordered set of values of its columns; and so on. Values can only be stored persistently by storing them in the columns of database tables.

Matisse

The state of the Matisse metamodel is represented by values stored in the objects which represent the metamodel. The state of the class schema is represented by the values stored in the objects which represent the database schema. The state of an instance is represented by values stored in the instance. Values may be literals or OIDs that serve as pointers to related objects.

All objects (metamodel objects, class schema, and instances) are stored on disk in buckets, which are discrete units of transfer of information from client to server. Bucket size can be optimized by the user for application performance.

The state of the database is determined by logical time, which increments at commit time of each transaction. The database may be viewed from any logical time specified by the user. The user sees all objects which existed at the specified logical time in the state as it existed at that logical time. This includes metamodel objects and class schema objects, as well as instances.

C++

The state of a C++ object is defined by its data members. Each object of the class that is created gets a copy of all the data members, except for those declared as static. static data members are data members shared by all instances of the class; these would be equivalent to the instance variables of a Smalltalk class object.

OOCOBOL

Object state in OO COBOL consists of data items (which may be structured) defined in class object or object data divisions, and data defined within methods of class objects or objects. See entry under 7. Types and Classes, for the structure of class definitions, and entry under 2.5 methods for the structure of method definitions.

Smalltalk

The state of a Smalltalk instance is represented by the values of its instance variables.

Eiffel

The state of an Eiffel object is represented by the data stored in its `attributes'. The attributes of an object may be attached to either simple objects, (integers, reals, etc.) or complex objects (user defined types).

The state of an object may be accessed through the names of its attributes (depending on the publicity of those attributes). The attributes may be attached or not attached to another object. If the attribute is not attached, (i.e., is not pointing to anything) it is said to be a `Void' reference. (See also entry under 9. Noteworthy Objects).

An attribute may be either a reference type, whereby it is a reference (pointer) to an object, or it may be an expanded type, whereby it is another object itself.

For example, a class with the following attributes:

	a: A			- attribute a of type A

	b: expanded B	-- attribute b of type expanded B

May appear in memory as follows:

	a -----> instance of A	-- a reference to an object of type A

	b (an instance of B)		-- b an actual object of type B

The state of an attribute can also be accessed by the values of functions (as opposed to procedures) that return some value that represents part of the state.

Via a public interface of a class, attributes and functions with no arguments appear identical. The user of the class does not need to know whether the object returned is an actual attribute of the class or calculated by a function of the class.

Cecil

In Cecil a method declaration whose body is the keyword field defines a pair of accessor methods which share hidden mutable state. The get accessor method (whose name is the same as the declared field) takes a single argument, specialized on the object "containing" the field, and returns the contents of the field. The set accessor method (whose name is set_ followed by the declared field name) takes two arguments: one specialized on the object containing the field and the second unspecialized. When invoked, the set accessor mutates the contents of the field to refer to its second argument; set accessors do not return results. Specializing the accessor methods on the object containing the field establishes the link between the accessor methods and the object, allowing the accessor methods to be considered part of the object's implementation. See entry under 5. Encapsulation.

SELF

In SELF, objects consist of named slots used to represent both state variables and operations. Objects access variables in the same way they invoke operations: by sending messages. For example, to access its X variable, a point object sends itself the "X" message. The message finds the slot named "X", and evaluates the object found there. If the X value is a number, the result of the evaluation would be the number itself. To change the value of its X variable, a point object sends itself the "X:" message with the new value as its argument. The message finds the slot named "X:" (which is the assignment slot corresponding to X), and evaluates the object found there (which would be the assignment primitive, as described in the SELF entry under 2. Objects).

System Object Model (SOM)

The state of SOM objects is accessed through published interfaces to an object. Invoking operations on objects may cause state changes.

�OLE Component Object Model

State in the Component Object Model consists of a set of stored values essentially equivalent to C++ data members.

Analysis and Design Methods

SA:	“A state [of a class] represents a stage in the life cycle for instances of the object [class] concerned.” States are modeled with a Moore diagram.

CA:	“An Object State is the identification of Attribute value(s) which reflects a change in Object behavior.”

RA:	“An abstraction of the attribute values and links of an object wherein sets of values are grouped together in states according to the properties that affect the gross behavior of the object.”

JA:	States are modeled with a Mealy diagram augmented by conditions on the transition edges.

“The internal state is what characterizes all the values of those variables that are important for description, as well as variables relating to the application and variables that are included due to the implementation environment.”

“The computational state describes how far we have come in the execution [of a use case], as well as the potential future execution.”

WD:	Not used

MD:	“The notion of state used here is simple: every instance of a class has a certain number of fields, corresponding to the attributes of the class. The values of these fields at any point during system execution determine the state of the object.” ...[T]he state is a pure abstraction, never accessed directly, but only manipulated through commands [procedures] and queries [functions].”

EA:	“A basic part of behavior modeling is the set of states an object exhibits in a system. ...[A] state represents an object’s status, phase, situation, or activity.”

FA:	“In the analysis phase, the state of a system is modeled as a set of objects [and their attributes] that participate in relationships.” “Note that all of the operations in an operation model act on the same global state... The operation model specification says nothing about the intermediate states through which the system passes while the operation is active.”

FD:	“Each class has an abstract state space that defines the semantic state of the class. The actual concrete representation of that state is encapsulated. The complete abstract state space of a class should be reachable from the class interface.”

FC:	“A state machine is some collection of states and labeled transitions between them.” The states are translated from analysis, and remain global states.

OA:	“State is a collection of associations an object has with other objects and object types.”

BD:	“The state of an object encompasses all of the (usually static) properties of the object plus the current (usually dynamic) values of each of these properties.” “The state of an object represents the cumulative results of its behavior.”

HA:	State is the combination of values of the attributes and associations.

NA:	“System state[:] The sum of all information stored in a system.” “Object state[:] That part of the system state that has an effect on the future behavior of an object. Object state often corresponds to one or more attributes of an object, but this does not necessarily mean that data is stored in the object itself.”

�2.7	object lifetime

Editor's Note: The discussion here should be extended to handle cases in distributed systems in which referenced objects become unreachable due to, e.g., communication or site failures. Some of these issues could also be characterized in terms of what sort of responses to requests or messages are legal (e.g., is "message could not be delivered" a legitimate response, as distinct from, say, "message not understood"?).

OODBTG Reference Model

The "life" of an object is the period during which it exists. An object's life begins as the result of a "create" operation. An object's life ends as the result of a "destroy" operation. An object whose life begins and ends within a single process is called a "transient". An object which lives longer than the execution of the process that created it is called a "persistent". Some primitive objects such as literals, have eternal lives, are neither created nor destroyed, and represent themselves.

An object is "reachable" if and only if there is an operation that returns the object as a result. The "transitive closure" of an object is all objects contained directly or indirectly within the object, or more generally all objects reachable from the object directly or indirectly by repeated application of some filtering predicate. The term "navigation" is often used when moving from object to object, possibly through a sequence of move operations.

An object is perceived to exist if and only if it is reachable. If no operation exists that will return the object as a result, then the object is "unreachable" (though it may or may not be physically destroyed and system-internal operations may or may not still keep track of the object.) Destruction of an object makes it unreachable. Operations which render an object unreachable have the effect of destroying the object.

Rules for creating and destroying objects are system dependent. In some object models systems, the application explicitly invokes creation and destruction operations; in others, some sort of implicit scheme based on "referential integrity" insures that objects that other objects depend on cannot be explicitly destroyed as long as the other objects continue to exist. See entries under 9.4 containment and 2.4 specification of behavioral semantics.

At the implementation level, destruction or deletion of objects may involve reclaiming the storage space occupied by such objects. Some systems allow a destroyed object's object identifier to be reclaimed for later reuse; others do not. Schemes like "garbage collection" or "reference count" may be used to manage and reclaim space associated with destroyed objects.

OMG CORBA IDL

Objects can be created and destroyed. From a client's point of view, there is no special CORBA mechanism for creating or destroying an object. Objects are created and destroyed as an outcome of issuing requests. The outcome of object creation is revealed to the client in the form of an object reference that denotes the new object [CORBA Specification 2.2.2 Requests].

ODMG

Object lifetime is orthogonal to type, is specified at object creation and, once specified, cannot be changed (there is some discrepancy between section 2.3.2.7 which discusses lifetime and section 2.3.2.6 where the create operation is discussed and makes no mention of lifetime). Lifetime can be "coterminous with procedure" meaning it is declared in the heading of a procedure, allocated out of the stack and returned to the free pool when the procedure ends, "coterminous with process" meaning it is allocated by the programming language runtime, or "coterminous with database" meaning it is managed by the DBMS runtime.

Lifetime is not applicable to literals (immutable objects). Literals always exist implicitly. Most queries return literals.

The query language contains expressions for constructing objects, but there is no mention of lifetime of these objects.

EXPRESS

Not an issue as it is a conceptual schema language.

Open Distributed Processing

Lifecycle issues are treated differently in ODP depending on whether the issue is being dealt with from an engineering (functional architectural packaging) or an implementation perspective.

ODP distinguishes between creation and introduction of an object. Creation of an object is the action of instantiation, resulting in the existence of a new object. Instantiation of an object template is an object produced from a given object template and other necessary information. The object exhibits the features specified in the object template. A template is the specification of the common features of a collection of objects in sufficient detail that an object can be instantiated using it. (An object template is an abstraction of a collection of objects). Instantiation of an object template may involve actualization of parameters, which may in turn involve instantiating other (object) templates or binding of existing interfaces. Introduction of an object is instantiation of an object, when it is achieved by a mechanism which is not covered by the model. (Any object is either created or introduced, but not both.)

Deletion of an object is the action of destroying an instantiated object.

Editor's Note: I believe that from a computational perspective, references may exist to objects or interfaces that "disappear", either because they are deleted, or because of failures.

�Management Information Model

Instances of an object class may be created or deleted either explicitly or automatically. Yet, once created these instances have identical behaviors. Explicit creation or deletion means that instances are created using the CMIS M-CREATE service or deleted by using the CMIS M-DELETE service at the request of a managing system.

The create operation creates a managed object of the specified managed object class, or a managed object of a compatible managed object class (if allomorphism is supported). The containing (superior) managed object must already exist before a contained managed object can be created. If the superior managed object is not specified in the create request (either directly through the Superior object instance parameter or indirectly through the instance name specified in the Managed object instance parameter), the managed system assigns a superior object instance as well as the instance's RDN. If the Superior object instance is specified in the create request, the managed object is created within that superior managed object.

Automatic creation or deletion refers to an object instance being either created or deleted automatically by the managed system (e.g., NE) based on some predefined occurrence. These object instances are created with the conditional packages that the managed system supports and with all of the mandatory packages. Depending on the managed object class definition, the objectCreationNotification and the objectDeletionNotification may be emitted upon automatic creation and deletion to notify the managing system.

Creation and deletion rules of a subordinate object may be specified via the name binding template. Multiple name bindings may be defined for an object class with the same superior object class but with different creation and deletion behavior.

SQL3

An ADT instance can exist in any location that an ADT name can be referenced. However, the only way that any ADT instance can be stored persistently in the database is to be stored as the column value of a table. For example, in order to store instances of an employee_t ADT (see 7. Types and Classes) persistently in a database, a table would have to be created with a column having the ADT as its data type, such as the emp_data column in:

CREATE TABLE employees

 (emp_data employee_t);

There is no facility in SQL3 to name individual instances of an ADT, and to store them persistently in the database using only that name. Similarly, there is no central place that all instances of a given ADT will exist (a built-in type extent), unless the user explicitly creates such a place, i.e., by defining a table in which all instances are stored. Thus, in SQL3 it is not necessarily possible to apply SQL query operations to all instances of a given ADT. The instances must first be stored in one or more tables (as column values).

A row in a table exists until it is deleted. Deletion of an ADT instance is done by deleting the row in which it is stored.

See also 7. Types and Classes.

�Matisse

The designers of Matisse felt that garbage collection was inappropriate for commercial production databases. Version collection occurs at the discretion of the user. If all version collection is done immediately, the database operates like current database systems which have no inherent knowledge of object history.

Typically, version collection is done on a user-specified, periodic basis after execution of a "save time" function which flags a historical logical time as a view of the database that should not be collected. Reporting or on-line backup can be done without locking by executing reads on the "save time" view of the database. If reporting or backup is done at low priority, this has negligible effect on performance of production transaction processing. When historical versions are no longer needed, they may be version collected at the discretion of the user.

Matisse is designed to retain knowledge of all historical states of the database through systematic archival of version collected objects.

C++

The life-cycle for an object begins when it is created, and ends when it is destroyed. In a C++ class definition, a member function with the same name as the class is a constructor. This is a function which is called automatically whenever an instance of the class is created. Constructors are typically used to initialize the data members of the object to their default state, but may also be used to allocate resources (memory, files, etc.). For any class, a number of constructor functions may be declared, each taking different types of arguments, providing different ways of initializing instances. A default constructor for a class is a constructor of that class that can be called without any arguments. A default constructor for a class will be automatically generated if no constructor has been explicitly declared for that class. A copy constructor for a class is a constructor that can be called to copy an object of that class (it has a single argument of the corresponding type). A copy constructor is called when, for example, an argument object is passed by value to a function, or when an object is initialized with the value of another object. A copy constructor for a class will be automatically generated if no copy constructor has been explicitly declared for that class. A member function with the same name as the class with a leading tilde (~) is a destructor. This is a function that is called automatically when the object is deleted. The destructor is typically used to deallocate any memory allocated for the object (and may also release any other resources acquired during construction). Constructors and destructors are not required in class definitions.

There are several ways to create objects in a C++ program. One is to define a variable as being of a particular class, either as a global variable or as a local variable within a block. When the declaration is encountered during program execution, space is allocated for the object and the constructor, if any, for the object is called. Similarly, when an object variable goes out of scope, its destructor is called automatically. Another way to create an object is to declare a variable that is a pointer to the object class and call the C++ new operator, which will allocate space for the object and call the constructor, if any, for the object. In this case, the pointer variable must be explicitly deallocated with the delete operator. The constructor for the object is executed when new is called, and the destructor is executed when delete is called. An object can also be constructed by the explicit use of a constructor in an expression.

When a class is derived from another class, it inherits its parent class' constructor and destructor. Parent constructors are invoked before derived constructors. Destructors are invoked in the opposite direction, proceeding from the derived class upward through its parent chain.

OOCOBOL

The life-cycle for an object begins when it is created, and ends when it is destroyed. An object of a given class is created using a CBL-CREATE method associated with the class object for that class. Object classes may be defined as transient, persistent, or collectable. If a class is transient, the class objects and objects of the class are destroyed automatically when the run unit (program execution) terminates. If a class is persistent, the class object and objects of the class are destroyed only when a CBL-DISCARD method is invoked on them. Persistent class objects and persistent objects exist from one run unit to the next. If a class is collectable, the class is transient and hence the class objects and objects of the class are destroyed automatically when the run unit terminates. In addition, objects of the class may be destroyed before the run unit terminates by the run unit's garbage collector, when they can no longer be referenced by transient objects within the run unit. (If a reference to a transient object is stored in the object data or class object data of a persistent object, the results of using this reference are undefined).

Smalltalk

Smalltalk object instances are created with the “new” method. Each object instance is given a unique identifier called an object pointer or object reference. New classes are created by using the “subclass” method. The “new” and “subclass” methods are inherited by almost all classes. Every instance object pointer is also associated with an object pointer of a class. Unlike the “new” and “subclass” methods, there are no specific methods that remove an object that is no longer useful. Smalltalk objects are deleted when they are no longer reachable (garbage collected).

Eiffel

The lifetime of an object in Eiffel extends from creation until it becomes unreachable. i.e., an object exists when it is created and attached to some entity; it ceases to exist when either it has lost all references to it (and so becomes unreachable) or it is explicitly `forgotten' (deleted). An unreachable object is automatically garbage collected.

To make a new object in Eiffel the create construct is used ("!!") whereby a new object is created and attached to an entity, such as an attribute. During creation all simple types (integers, reals, strings, characters and references) are initialized to default values.

Removing or forgetting an object is performed by either losing all references to an object or by attaching the special object Void to the entity. For example,

	a := Void

Supposing there are no other references to the object initially attached to a, then that object has been forgotten.

An object generally exists no longer than the lifetime of the executing program. However, the lifetimes of objects can be extended through the use of persistence. A number of library classes supply the necessary functionality for objects to become persistent and therefore exist beyond the lifetime of the program.

Emerald

See 6. Identity, Equality, Copy

Cecil

New objects are created either through object declarations, or by evaluating object constructor expressions. An object declaration has the form:

 object <name> {<relation>} [<field_inits>]

where <relation> denotes isa, inherits, or subtypes specifications describing the parents and/or supertypes (respectively) of the new object. The form of an object constructor expression is the same except that no name is specified. Object constructor expressions are analogous to object creation operations found in class-based languages. Note that only fields are specified in object constructors; methods are defined in separate expressions to allow them to be associated with multiple objects through their specializers (see entry under 2.5 methods). Objects are garbage collected when they are no longer referenced by other objects.

SELF

To make a new object in SELF, an existing object (called the prototype) is cloned (shallow-copied). The slots in the new object that correspond to state variables (including parent slots) can then be set to instance-specific values. An addition, the structure of the new object can be changed by adding or deleting slots, using special language primitives. As in Smalltalk, objects exist as long as there are references to them from other objects (SELF supports garbage collection).

System Object Model (SOM)

SOM objects are created by invoking a create operation on a factory object in the SOM run time. Once created, the object will exist until explicitly deleted or until the process that created it no longer exists. A SOM object would need to make use of a persistence mechanism in order to exist beyond the life of the process that created it. A persistence mechanism is beyond the scope of this object model discussion, however, SOM could be and has been used as the basis for building a variety of persistence frameworks.

OLE Component Object Model

Unlike C++, where objects are constructed using the class's constructor function, there are a number of ways to create a Windows Object. A common way is to use a class factory object. A class factory object represents a specific class identifier, is obtained by a specific OLE function, and supports an interface named IClassFactory. The IClassFactory interface contains a function named CreateInstance, to which is passed an identifier of the desired interface to that object. The expression IClassFactory::CreateInstance is the logical equivalent of C++'s new.

In C++, an object is destroyed by calling the delete operator on an object pointer (which ultimately causes the object's destructor function to be called). The corresponding function that frees a Windows Object (and essentially calls its destructor) is a function called Release. This function is part of the IUnknown interface, and is thus present in every interface. However, calling Release does not necessarily destroy the object. Internally, the object maintains a count of how many references exist to any of its interfaces. Creating an interface pointer increments the reference count, whereas Release decrements it. When the count is reduced to zero, the object frees itself, calling its own destructor.

Analysis and Design Methods

SA:	The lifetime of an instance is explicit in the state diagram of the class. Each class either has a “circular” life cycle and instances always exist, or has a “born and die” life cycle and instances are created and destroyed as a result of events.

CA:	Create and release services are implicit in all classes. Release disconnects any existing message connections and deletes the instance.

RA:	 No explicit concept of instance life cycle.

RC:	“Objects [instances] can be allocated statically (at compile time), dynamically (from a heap), or on a stack.” The lifetime of static objects “is the duration of the program.” “Most temporary and intermediate objects will be implemented as stack-based... The advantage is that they are automatically allocated and deallocated... [when] the declaring block [is] exited.” “One allocated, dynamic objects persist until they are explicitly deallocated. ... Some languages ... provide garbage collection, which removes the burden of deallocation from the programmer...”

JA:	“When a class in instantiated, a instance is created that follows a path in [a state transition graph] throughout its lifetime.” [i have not yet found the discussion of the end of the lifetime, though this is implicit in the correlation of use case instances with instances of control objects.]

WD:	Instance lifetime is discussed as a language issue.

MD:	Objects are explicitly created; they exist until they are no longer referenced.

EA:	The special interaction, “[c]reate brings an object into existence within the analysis system being modeled.” The special interaction, “[d]estroy causes an existing object to cease to exist as far as the analysis model is concerned.”

FA:	“The keyword new preceding an object identifier [in the Changes clause of an operation model schema] indicates that the system operation creates a new object in the system state.”

FC:	“An important issue... is that of object destruction.” This issue is treated as language dependent.

OA:	“In a creation event an entirely new object appears.” “[E]ach time an object is created, is must become a member of some object type’s set.” “In a termination event, an object is removed from our awareness.” “[A]fter termination the object is no longer an instance of any object type.”

BD:	Object lifetime is determined in accordance with the possibilities provided by the implementation language.

HA:	No explicit concept. Objectcharts show initial and final states.

NA:	Discussed as an implementation issue in terms of the possibility of garbage collection as a language capability, and the necessity in any case of providing for the eventual destruction of persistent objects.

�2.8	behavior/state grouping

As noted in the OODBTG Reference Model entry under 2.1 operations, there are two broad categories of object models, which we refer to as "generalized" and "classical object models." Classical models are, in many ways, subsets of generalized object models but they are founded on different metaphors. "Generalized object models" do not distinguish a recipient from other request parameters. In generalized models, a request is defined as an event which identifies an operation and optional parameters. For example, an AddToInventory(part1, lot2, bin3) request does not give special significance to either the part, the lot, or the bin. These objects participate uniformly in the request. An object in a classical model can be thought of as a "hunk of state", with a collection of methods grouped around it. An object in a generalized model can also be thought of as a "hunk of state" with a collection of methods, but a given method may be related to multiple hunks of state. For example, the AddToInventory method handling the request above would be related to the part, lot, and bin objects.

By using a generalized object model, the complexity of a real-world situation does not have to be always carved up into discrete self-contained objects. In other words, relationships or complex operations do not have to be artificially packaged as part of one particular object. The generalized object model considers a complex operation as jointly owned by all its parameters and considers a relationship as shared by its participating collection of objects. Therefore there is no need to artificially choose a distinguished owner of an operation or of a relationship.

OMG CORBA IDL

CORBA uses the classical object model in that a target object must be specified for each operation.

ODMG

ODMG specifies a classical object model: each operation has a distinguished argument. See also 9.1 Relationships.

Open Distributed Processing

Action: Something which happens. Every action of interest for modeling purposes is associated with at least one object. (Part 2). The performance of an operation is defined by an operation schema. The effect is the simultaneous change of the state of an object or group of objects. (Part 4).

Contract: An agreement governing part of the collective behavior of a set of objects. A contract places obligations on the objects involved. (Part 2, Clause 10.2.2)

Invariant: A predicate that a specification requires to be true for the entire life time of a set of objects."

�Management Information Model

The management model in MIM [Part 1] is classical due to constraints of the underlying CMIS services. However, the GRM model [GRM 93] is generalized.

SQL3

SQL3 routines may be defined within ADT definitions, or independently of them. SQL3 supports a generalized object model in terms of dispatching (see also 4. Polymorphism). However, there is no concept of a generic function which groups routines with a common signature. A routine defined within an ADT has access to that ADT's PRIVATE members.

See also 2. Objects.

C++

C++ implements a classical object model. In C++, members, including member functions, of objects are regarded as belonging to individual objects and their classes, and are accessed via the objects they belong to.

OOCOBOL

OO COBOL implements a classical object model.

Smalltalk

Smalltalk uses the “classical” object model.

Eiffel

Eiffel supports the classical model of objects.

Cecil

Cecil implements a generalized object model. In Cecil, objects and methods conceptually form a graph structure, with the object/method relationships being established by method specializers. See entry under 2.5 methods.

SELF

SELF supports a "classical" object model.

System Object Model (SOM)

SOM uses the classical object model in that a target object must be specified for each operation.

OLE Component Object Model

The Component Object Model implements a classical object model.

�Analysis and Design Methods

SA:	An event is always directed to a specific instance. Behavior depends on the instance and its state: in each state, an instance will respond to only to specified events; other events directed to the instance are ignored and lost to the system. The behavior in response to an event is determined by the state to which the instance moves as a result of the event. Uses the ‘classical’ object model.

CA:	Behavior is specific to a class. “An Object State is the identification of Attribute value(s) which reflects a change in Object behavior. The current state may be tested in a service chart and behavior modified as a result of the test.” Uses the ‘classical’ object model.

RA:	[The contributor does not understand Rumbaugh et al. here.] Uses the ‘classical’ object model.

JA:	See 2.6 state. Uses the ‘classical’ object model.

WD:	Responsibilities are assigned to a particular class; uses the ‘classical’ object model.

MD:	“...[B]y introducing a state and operations on this state, we make the abstract data type specification richer as it has more functions and more properties. ... In the end the view of objects as state machines reflects abstract data types which are more operational, but this in no way makes them any less abstract.” Uses the ‘classical’ object model.

EA:	Actions may be associated with both states and transitions. Uses the ‘classical’ object model.

FA:	“A life-cycle expression defines the allowable sequences of operations that a system may participate in over its lifetime. In at any point the system receives an event that is not allowed according to the life cycle, then the system ignores it and leaves the state of the system unchanged.” Uses the ‘classical’ object model.

OA:	‘Classical’ and ‘generalized’ object models are considered to be an implementation issue. “During analysis, however, we do not make such implementation-related choices. As such, we should index those operations having multiple input variables with multiple object types.” “This is sometimes referred to as multiple polymorphism.”

BD:	“... [W]e may say that all methods are operations, but not all operations are methods: some operations may be expressed as free subprograms. In practice, we are inclined to declare most operations as methods, although ... there are sometimes compelling reasons to do otherwise, such as when a particular operation affects two or more objects of different classes, and there is no particular benefit in declaring that operation in one class over another.” Uses both ‘classical’ and ‘generalized’ object models.

HA:	Uses the ‘classical’ object model.

NA:	Does not use state machines in analysis. Uses the ‘classical’ object model.

��2.9	communication model

Editor's note: the following introductory text has been supplied by the Editor.

Object models can be distinguished on the basis of the interaction primitives they support. These interact with the degree of concurrency that the model intends to support, and with any internal process structure that objects in the model may have. The basic means of information interchange in an object model is the message or request. An interaction between objects involves at least one object sending a message to at least a second object that receives it. There may be more than one construct provided to send or receive messages in a given model. Another consideration for each of the constructs is whether the construct is synchronous or asynchronous. A synchronous construct is one that causes the sending object to block until some other message-related event occurs. An asynchronous construct is one that permits the sending object to continue processing once the construct is executed locally. This choice reflects issues of synchronization as well as those of pure information exchange. These two dimensions give four possible choices for constructs: blocking send, non-blocking send, blocking receive, and non-blocking receive. All of these have been used in one way or another in various models. Language designs based on these approaches usually include variations and/or composite constructs that allow aggregate actions to be specified in terms of the set of interaction primitives supported. Examples include such concepts as hot links, pipes, as well as the transaction concept used in database systems and some programming languages. [Man89]

OMG CORBA IDL

CORBA provides a layer of abstraction above the communications layer, thus shielding clients from needing to know about the underlying communications mechanisms or where in the network the target object resides.

ODMG

The model assumes operations are executed sequentially, although it does not preclude concurrent or parallel operations.

The model supports nested transactions, where the commit of a nested transaction is dependent on the containing parent transaction's commit. Type Transaction defines operations to begin, commit, abort and checkpoint a transaction. A transaction obtains standard read and write locks with pessimistic concurrency control.

Management Information Model

Not applicable.

OOCOBOL

The programming model for OO COBOL is synchronous.

Smalltalk

All communications within Smalltalk occur through messages between objects and most Smalltalk implementations support a form of concurrency. For example, Smalltalk-80 provides for multiple independent processes, and semaphores provide the common mechanism for synchronizing the independent processes.

Eiffel

Currently not applicable, however an implementation for concurrency in Eiffel is being developed and may be released in future versions.

Emerald

Emerald supports concurrency, in the form of active objects. An active object contains a process that is started after the object is initialized, and executes in parallel with invocations of the object's operations, and with the executions of other active objects. This process continues to execute its specified instructions until it terminates. An Emerald process represents an independent thread of control. New threads may be created dynamically by creating new objects.

In Emerald, operation invocation is synchronous. Thus, a thread of control can be thought of as passing through other objects when it invokes operations on those objects. This means that there can be multiple simultaneous invocations of an operation in the same object. Each such invocation can proceed independently.

Emerald uses monitors to regulate access to local state that is shared by the object's operations and process. Synchronization is achieved using system-defined condition objects [Hoa74]. [RTLB+91]

The following example illustrates various aspects of Emerald with a simple implementation of a clock. The objects in the example are created using Emerald object constructors, denoted by the keyword object (see entry under 5. Encapsulation for a description of object constructors). The clock object uses a simple internal representation (theTime) that is protected by a monitor and can be manipulated by several monitored operations. The internal representation is constantly updated by the clock object's process, which synchronizes with a timing pulse provided by the system object. The operations for converting between the internal and external representations are defined outside the monitor, thus allowing multiple simultaneous invocations of them to proceed concurrently. The System object demonstrates a simple use of Emerald condition objects to provide buffering of timing pulses. [RTLB+91]

const Clock <-

 object C

 export getTimeOfDay, setTimeOfDay

 monitor

 var theTime: Integer <- 0

 operation IncTime

 theTime <- theTime + 1

 end IncTime

 function getTime -> [r: Integer]

 r <- theTime

 end getTime

 operation setTime [r: Integer]

 theTime <- r

 end setTime

 end monitor

 operation setTimeOfDay[newTime: String]

 var t: Integer

 % store newTime in some internal form

 setTime[t]

 end setTimeOfDay

 operation getTimeOfDay -> [currentTime: String]

 var t: Integer <- getTime

 % return the String form of t

 end getTimeOfDay

 process

 loop

 System.Tock

 IncTime

 end loop

 end process

 end C

const System <-

 object S

 monitor

 const timing <- Condition.Create

 % Tick is invoked by a hardware clock

 operation Tick

 signal timing

 end Tick

 operation Tock

 wait timing

 end Tock

 end monitor

 end S

System Object Model (SOM)

Since SOM is a basic mechanism, its run-time model is one where an operation occurs on a single thread within a single process. However, SOM code permits concurrent execution by multiple threads on systems where SOM supports the underlying threads model, therefore, multi-threaded programs can use mutual exclusion mechanisms to serialize updates to SOM objects with confidence that critical sections in SOM are thread safe.

Complex object interactions that need to span process boundaries can be constructed on SOM using standard inter-process communication facilities provided by the underlying system. No serialization code is necessary if programming in a single thread , single process model.

A class library based on SOM is used to provide SOM with distributed access to remote SOM objects.

�OLE Component Object Model

The programming model for Windows Objects is synchronous, based on a "Lightweight Remote Procedure Call" (lightweight because, at least at the moment, the calls are not really remote; they are all made on one machine). Further development will allow the lightweight RPC to be replaced by genuine (distributed) RPC.

�2.10	events

Editor's Note: This subsection has been added both for the benefit of those models that distinguish events from operations, requests, or messages, and to provide a place to describe how other models handle "events".

ODMG

Not applicable.

SQL3

In SQL, a trigger is a named database construct that is implicitly activated whenever a triggering event occurs. When a trigger is activated, the specified action is executed if the specified condition is satisfied. An example is:

CREATE TRIGGER update_balance

 BEFORE INSERT ON account_history /* event */

 REFERENCING NEW AS ta

 FOR EACH ROW

 WHEN (ta.TA_type = ‘W”) /* condition */

 UPDATE accounts /* action */

 SET balance = balance - ta.amount

 WHERE account_# = ta.account_#;

Triggers can be used for a number of purposes, such as validating input data, reading from other tables for cross-referencing purposes, or supporting alerts (e.g., through electronic mail messages). Triggering events include insertion, deletion, and update of tables and columns. A condition can be any SQL condition (including those that involve complex queries), and an action can be any SQL statement (including compound statements, and those that invoke SQL routines). The trigger can also specify whether the trigger should be activated BEFORE the triggering SQL operation is performed, or AFTER. The condition and action can refer to both old and new values of rows affected by the SQL statement. The trigger condition and action can be executed FOR EACH ROW affected by the triggering statement, or only once for the whole triggering statement (FOR EACH STATEMENT).

Smalltalk

No specific mechanisms for handling events are built into the Smalltalk language, but “event handling” logic is commonly implemented in Smalltalk applications through its normal messaging techniques.

Eiffel

Not applicable.

OLE Component Object Model

OLE handles event notifications through an object called an advise sink--that is, an object that absorbs notifications from a source. The advise sink not only handles notifications for data changes, but it also is generally used to detect changes in another compound document object, such as when it is saved, closed, or renamed. Specifically, an object that is interested in being notified about changes to a specific data object implements an object with an IAdviseSink interface, and passes a pointer to this interface to the data object using the DAdvise function of the IDataObject interface (see entry under 9.2 attributes). Whenever its data changes, the data object calls the OnDataChange function in the IAdviseSink interface it has been passed. (The IAdviseSink interface also contains other notification functions, such as OnRename, OnSave, etc.)

Analysis and Design Methods

SA:	“An event is the abstraction of an incident or signal in the real world that tells us that something is moving to a new state. in abstracting an event, four aspects of the event are specified: meaning, destination [class], label, [and] event data.” Event data includes “identifier data [which] specifies the instance... that is going to receive the event.”

CA:	

RA:	“An individual stimulus from one object [instance] to another is an event.” “An event is a one way transmission of information from one object to another. ... An object sending an event to another object may expect a reply, but the reply is a separate event under the control of the second object, which may or may not choose to send it.”

JA:	The event when an object communicates with another object. See the discussion of ‘stimulus’ elsewhere.

WD:	Not used

MD:	[find again the discussion of events.]

EA:	“An event is any change within a system. Examples include the creation or deletion of an object, a change in a relationship set, a change of state for an object, starting or stopping an activity, and the reception of a command or message.”

FA:	“An event is an instantaneous and atomic unit of communication between the system and its environment. An input event is sent by an agent to the system; an output event is sent by the system to an agent. The communication is asynchronous, as the sender does not wait for the event to be received. The sender may supply data values and objects with an event. When a system receives an event it can cause a change of state and the output of events. The effect of an event is determined by the values that are supplied with it and the state of the system when it is received.”

OA:	“An event is a noteworthy change in state.”

BD:	“An event is some occurrence that may cause the state of a system to change.” “ An event may be a symbolic name (or a named object), a class, or the name of some operation. ... We may take the strategy that all events are just symbolic names and that each class with interesting event-ordered behavior provides an operation that can consume such names and carry out the appropriate action. ... For more generality, we may treat events as objects, and so define a hierarchy of event classes that provide our abstraction of specific events. ... Lastly, we might define an event simply as an operation ... This approach is similar to that of treating events as symbolic names, except that we no longer require an explicit event-dispatching operation.”

HA:	The term is not used. “Messages are the triggers for activating services”

NA:	Used only for occurrences external to the system. “System event[:] Something to which a system will respond with a certain behavior.”

�2.11	transition rules

Editor's Note: This subsection has been added to describe an aspect of a number of Analysis and Design Methods.

Analysis and Design Methods

SA:	Each class has a set of transition rules which “specify what new state is achieved when an instance in a given state receives a particular event.”

CA:	Transitions rules are shown as a part of the service charts.

RA:	Not explicit

JA:	Not explicit

WD:	Not used

MD:	Not used

EA:	“The events and actions that activate state transitions are called triggers.” “A trigger gives the conditions that, when met, may cause the transition to fire.”

FA:	“A life-cycle expression defines the allowable sequences of interaction that a system may participate in over its lifetime. If at any point the system receives an event that is not allowed according to the life cycle, then the system ignores it and leaves the state of the system unchanged. ... Life cycles are simple extensions to regular expressions or grammars.” [The method] “does not use state machines during analysis. “

FD:	A node of a state machine.

OA:	‘Triggers’ and ‘control conditions’ determine what state change takes place when an event occurs. See 9.6. ‘Operations’ are associated with states, transitions, or both. “The current trend is to employ a combination of Mealy and Moore modeling techniques.”

BD:	[A] “change of state [caused by an event] is called a state transition.” “Each ... event is likely to trigger some action ...” The actions are shown as text on the state transition diagram.

HA:	State transitions are modeled using objectcharts.

NA:	Not used.

�3.	Binding

OODBTG Reference Model

"Binding" chooses a method or methods to be executed in response to a request, based on the operation and objects in the request.

Note: CLOS allows method combination and may bind to multiple methods.

In classical models, the binding choice is based on the class of the recipient. In generalized models, the binding choice may depend on the classes of several parameters.

Different object languages support different criteria and times for binding an operation to a method for execution. Examples are "early binding" at compile-time and "late binding" at run-time. See entries under 11. Object Languages.

OMG Core Object Model

4.2.6.3 Operation Dispatching

When an operation request is issued, a specific operation implementation (method) is selected for execution. This selection process is called operation dispatching. In the Core model, the process of selecting an implementation to invoke is based on the type of the object supplied as the controlling argument of the actual call11. The operation of the given name defined on the immediate type of the controlling argument is chosen for invocation. In some cases this can be done at compile time with no loss of flexibility, in others it must be delayed to execution time.

11 The single controlling argument restriction can be relaxed in a component and generalized to multiple argument dispatching.

OMG CORBA IDL

CORBA provides support for both early and late binding which are referred to as static and dynamic respectively. See entry under 1. Basic Concepts.

ODMG

The model supports run-time binding of methods to objects based on the first argument type. (see 2.1 Operations)

EXPRESS

EXPRESS support operator overloading only for the builtin arithmetic, etc. operators. Binding is thus a non-issue.

Open Distributed Processing

In general, the binding process involves the establishment of supporting communication functions and the initialization of functions. This process continues recursively until it is terminated by the use of binding (contexts) which already exist and can thus already support interactions. A binding is characterized by:

Binding can refer to a process - "binding A to B". This idea corresponds to the notion of an establishing behavior.

Binding can refer to a state of affairs - "a binding exists between A and B". This idea corresponds to the notion of a context. When a binding exits, there is an appearance of an end-to-end path between the objects bound. A binding (context) represents the commitment of resources and the assumption of stability of aspects of a configuration. The thing made possible by a binding is an enabled behavior.

A (necessary but not sufficient) precondition for the establishing behavior is the possession of an interface reference. The fulfillment of this precondition corresponds to the notion of a reference binding.

The process of unbinding corresponds to the notion of a termination behavior (not to be confused with an interrogation termination). In order for two interfaces to bind, at least one interface must posses an interface reference to the other. This information may be passed some type of intermediary.

A binding is composed of:

an interface offer: information declaring the existence of an interface to which other objects may bind. The information will include the interface reference and the interface type reference. The term service offer is equivalent but is not used here.

an acquire: obtaining an interface offer

an acquirer: the object which obtains an interface offer

an exporting: making an interface offer available to a trader

an importing: obtaining an interface offer from the trader

Editor's Note: this is a more general definition of "binding" than is used in the current feature definition, which restricts itself to binding a method to an operation request.

Management Information Model

Not applicable.

SQL3

See 4. Polymorphism.

Matisse

Binding through inheritance

Binding is supported in a straightforward manner. Functions are bound to objects through the inheritance hierarchy. Subclasses consist of all attributes, relationships, messages, and methods of the superclasses plus those additionally specified by the user. Multiple inheritance is supported and all instances of a subclass are instances of the superclasses.

Matisse does not allow name conflicts on attributes and relationships. Methods may be overloaded. In a multiple inheritance hierarchy, invocation of methods occurs in a left first, depth first manner which is determined by the way the user specifies the class hierarchy.

The Matisse class hierarchy is independent of any language hierarchy. Typically, a user develops an application hierarchy that consists of persistence and non-persistent objects. The persistence objects are mapped into the Matisse database by calls to the Matisse API (a set of C function calls).

Binding through constraints and triggers

Using the API requires the application programmer to translate objects into the database. A set of classes could be created to support persistent C++ or Smalltalk transparently to the programmer.

The overhead of using the API is compensated for by the gain in functionality supported by the database. Matisse supports constraints on attributes and relationships, as well as pre- and post-conditions on any changes to attributes and relationships. The database will always look for these constraints and triggers when processing. It the user has not specified any, there is virtually no cost. As an implementation of the notion of "stored procedures", this kind of binding is orthogonal to the inheritance hierarchy.

C++

C++ supports both static and dynamic (run-time) binding of function invocations to object member functions, depending on how the member functions were declared in class definitions. In dynamic binding, binding occurs depending on the dynamic type of the object whose member function is being invoked. The correct operation for that object will be selected automatically by the run-time system. See also entries under 2.5 methods and 4. Polymorphism.

OOCOBOL

When a method is invoked on an object, the invocation is bound to a method implementation in the following way.

1.	If a method with the method-name specified in the invocation is declared in the object definition for the object, than that method is bound.

2.	If a method with the method-name specified in the invocation is declared for one of the inherited classes, then that method is bound. The search for a method in an inherited class will search each inherited class in turn, in the order that the classes are specified in the INHERITS phrase. Note that a method is declared for a class if it is implemented by that class or by a class directly or indirectly inherited by that class.

3.	If the method is not found, the exception EC-OO-METHOD is raised.

See also entry under 8. Inheritance and Delegation.

�Smalltalk

Smalltalk performs run-time binding of messages to object methods. See also entry under 4. Polymorphism.

Eiffel

Eiffel supports both late and early binding (in general this is true, however it depends on the implementation). Operations that have been redefined through inheritance utilize late binding at run-time, while operations that have not been redefined are statically bound at compile time.

Dynamic binding occurs depending on the `dynamic' type of the receiver object. The correct operation for that object will be selected automatically by the run-time system.

Emerald

In Emerald, objects conceptually do not share implementation, and there is no notion of implementation inheritance. Hence, in Emerald the choice of a method to be executed in response to a request is limited to the single implementation of the operation contained in the object.

Cecil

See entry under 2.3 messages.

SELF

SELF is a dynamically-typed language, and provides for run-time binding of a message sent to an object to the method that implements the requested operation. SELF provides a form of classical object model in which the binding choice is based on the receiving object itself (rather than its class, since SELF has no classes). See entry under 2. Objects.

System Object Model (SOM)

SOM provides support for both early and late binding. These binding choices are on a per method bases. See entry under 2.5 methods for a discussion of different method invocation models.

OLE Component Object Model

"Binding", meaning the choice of a method to be executed in response to a request, is handled by directly calling the object function identified in the request. OLE does not support implementation inheritance (see entry under 8. Inheritance and Delegation), so there is no dispatching by searching a class hierarchy. The term "binding" as used in the OLE context has a somewhat different meaning, relating to the use of a type of object called a moniker in object linking. See entry under 9.6 other.

Analysis and Design Methods

SD:	“In OOD it is common to define published operations of the same name in several different classes. In such a situation the selection of exactly which operation to invoke varies in a language-dependent manner.”

CD:	Time of binding is considered to be a language feature. “Dynamic binding (which could also be referred to as dynamic dispatching) describes the ability of an application to choose or bind a particular service at run time...”

RD:	Time of binding is considered to be a language feature. “...method resolution at run time (also known as dynamic binding) [is used] to implement polymorphic operations.” It “is the process of matching an operation on an object [instance] to a specific method.”

JA:	“The linking of the received stimulus to the appropriate operation to be executed is performed by binding the stimulus to this operation. If this binding occurs during compilation, it is said to be a static binding. ... If this binding occurs when the stimulus is actually being sent, that is during run-time, it is said to be dynamic binding. Other names for this are late, delayed, or virtual binding.

WD:	Not used. Type checking is discussed as a language issue.

MD:	“The rule known as dynamic binding implies that the dynamic form of the object determines which version of the operation is applied.” “The ability of operations to automatically adapt to the objects to which they are applied is one of the most important properties of object oriented systems.”

EA:	Not used.

FC:	“Dynamic binding is the process whereby the actual method code for a method invocation is selected. It is required when a method accepts arguments of any subtype of its argument type, and the compiler cannot determine as compile time what the actual type of an argument is.”

OA:	Considered an implementation issue.

BD:	Binding is determined in accordance with the possibilities provided by the implementation language.

HA:	Considered an implementation issue.

NA:	“Dynamic binding[:] A mechanism permitting different behavior to result from the same feature call.” Dynamic binding is considered an essential characteristic of the analysis model.

�4.	Polymorphism

OODBTG Reference Model

"Polymorphism" means that the binding of a request involves a choice among alternative implementations of the operation. Polymorphism allows "overloading" of operations, which means that an operation may be implemented in several alternative methods, associated with different classes of parameters.

�OMG Core Object Model

The Core Object Model supports the kind of polymorphism generated by subtyping, and does not rule out other forms of polymorphism. See entries under 2.2 requests, 7. Types and Classes, and 8. Inheritance and Delegation.

OMG CORBA IDL

Polymorphism is not addressed in the CORBA specification since the specification only deals with interfaces and not the object implementation. The specification does not preclude multiple object implementations supporting the same CORBA interface.

ODMG

The model supports polymorphism implicit in subtyping, as well as parameterized collection types.

EXPRESS

No notion of polymorphism. A function call activates a function. The number and type of the actual parameters must agree with the formal parameters defined for that function.

Open Distributed Processing

A fundamental notion of ODP, used extensively. The property of satisfying many types is known as polymorphism (literally: many forms). Polymorphism is the property that instances of one type can also behave or be treated as though they are instances of another type. Subtyping automatically generates polymorphism, but the two concepts are independent.

Management Information Model

For a managing and managed system to interoperate, they must both be aware of the managed object classes that will be used during communication. However, there is also a requirement to maintain interoperability when either the managed system or the managed object class definitions are enhanced. Allomorphism allows newly defined object classes (which are extensions of more general object classes) to be instantiated to satisfy specific management needs, while still permitting communication based on the definitions of the more general object classes. This concept is valuable for upgrading managed object class definitions in one system without simultaneously upgrading the other system. For example, if a managed object class definition is upgraded in a managed system, but the managing system has not been upgraded, allomorphism allows both systems to be able to communicate using the former managed object class definition. In this example in the managed system, the managed object class is changed (as far as the interface is concerned), but still compatible with a former managed object class and instances still may behave as if they are instantiations of the former managed object class.

Allomorphism is a property of a managed object instance, not of a managed object class; that is, the object classes that an object instance may be allomorphic to is decided at the time of the creation of the instance and not at the time of the instance's class definition. An instance of a managed object class may only behave allomorphically with instances of a compatible object classes.

By use of allomorphism, it is possible to treat a managed object as if it were a member of a class other than the actual instantiated class. Thus, allomorphism simply refers to the capability of a managed object to "act" as if it were a member of another class. An instance of a managed object class (the extended managed object) may behave as allomorphic to a compatible object class. The behavior definition of the extended managed object class should not contradict the behavior of the compatible object class.

SQL3

Different routines may have the same name. This is referred to as overloading, and may be required, for example, to allow an ADT subtype to redefine an operation inherited from a supertype. SQL3 implements what is sometimes known as a generalized object model, meaning that the types of all arguments of a routine are taken into consideration when determining what routine to invoke, rather than using only a single type specified in the invocation as, for example, in C++ or Smalltalk. As a result, the rules for determining which routine to invoke for a given invocation can be fairly complex. The instance of the routine that is chosen for execution is the best match given the types of the actual arguments of the invocation at run time.

Matisse

Polymorphism is supported by the binding mechanism described in the Matisse entry under 3. Binding

C++

C++ supports polymorphism by allowing member functions defined in classes to be overridden with member functions having the same names (operator overloading), but different implementations, in derived classes (subclasses). In selecting the appropriate member function to call in response to a function invocation, C++ distinguishes between the static type of a reference and the dynamic type of the object it refers to at a given point . The dynamic type must be a descendant of the static type. The invocation is type-checked based on the static type of the reference. If the function called is a virtual member function, the member function associated with the actual object pointed to is called dynamically at run time. If the function is non-virtual, the call will have been statically bound to the member function of the reference's class at compile time. See also entries under 7. Types and Classes and 8. Inheritance and Delegation.

OOCOBOL

Polymorphism is a feature that allows a given statement to do different things. In OO COBOL, the ability for a data item to contain various objects of different classes means that a method invocation on that data item can be bound to one of many possible methods. Sometimes the method can be identified before execution, but in general, the method cannot be identified until run time.

A data item can be declared to contain objects of a given class or any descendant of that class; it can also be declared to contain objects that conform to a given interface. When a given interface is used, the classes of the conforming objects may be completely unrelated. These options are specified using the various forms of the USAGE IS OBJECT REFERENCE declaration for data items, as given below:

� [interface-name-1]

 []

 [[{ CLASS-OBJECT }]]

 OBJECT REFERENCE [[{ } OF] SELF]

 [[{ CLASS }]]

 []

 [[CLASS-OBJECT OF] class-name-1 [ONLY]]

See also entry under 8. Inheritance and Delegation.

Smalltalk

Polymorphism is the way that the Smalltalk language allows methods of same name to have predictable and meaningful results in related instances, yet perform the operations differently to achieve similar results.

Smalltalk supports polymorphism by allowing methods defined in classes to be overridden with methods of the same name, but different logic, in a subsequent subclass. In addition, methods of the same name can be defined in a total different subclass hierarchy.

In the class hierarchy below, all of the lowest level classes are defined to accept the message “moveForward,” but several different versions are implemented as indicated by (MFn) in the diagram. The message sent to the instances of “Bus” or “Auto” uses the method defined in the “Motorized” class. The same method is inherited by “Train” and “Motorcycle,” but both have overridden the inherited method by defining a method with different logic using the same message pattern. All the others instances in the diagram have the “moveForward” message pattern in their interface, but are not in the motorized inheritance chain. All of the “moveForward” methods function as you intuitively expect.

 Transport Mechanism

 (mFabstract)

 /------------------ | -----------------\

 Animal Powered Human Powered Motorized

 / (mF1) \ / \ / (mF5) \

Buggy Wagon Land-based Water-based Public Private

 / \ / (mF4) \ / \ / \

 Bike Skates Row Boat Canoe Bus Train Auto Motorcycle

 (mF2) (mF3) (mF6) (mF7)

Eiffel

Eiffel allows entities to be attached to different object types at run-time. Polymorphism in Eiffel is constrained by inheritance. Only those objects that `conform' to the declared type are allowed to be attached. Conformance of an object includes its declared type and any direct or indirect descendants.

For example, given class A, and subclasses of A being B and C. An entity declared as:

	entity: A

can be attached to objects of type A, B and C.

Static typing ensures that there will be at least one version of all operations requested by a client.

Emerald

Emerald supports a number of forms of polymorphism. In Emerald, all operations are naturally polymorphic (i.e., work "correctly" regardless of the types of their arguments) because objects (of different types) may be used as arguments provided they conform to the types declared for the formal parameters of the operation (a form of inclusion polymorphism). See entry under 7. Types and Classes, for a discussion of conformity. Emerald supports user-defined operations that return types (type objects), subject only to the constraint that the types of variables, constants and formal parameters be evaluable at compile-time. Since types are objects, types may be passed as arguments to functions that create types (i.e., parameterized type constructors). This is a form of parametric polymorphism. Objects in Emerald are also polymorphic, in the sense that they can be used in situations requiring different types; e.g., an object can be assigned to any identifier provided that the object's type conforms to that declared for the identifier.

SELF

SELF supports the form of polymorphism provided by run-time binding of a message sent to an object to the method that implements the requested operation. Since SELF is classless, the method that implements a given operation can potentially differ for each object (instance) that defines that operation, rather than just for each class. See entry under 3. Binding.

System Object Model (SOM)

The polymorphism provided by SOM depends on the method dispatching scheme selected. If "offset resolution" is used then a static scheme for typing objects is used and polymorphism is based strictly on class inheritance. If the "name resolution" method dispatching is used then methods are located dynamically and polymorphism is based on the actual protocols that objects honor.

OLE Component Object Model

The Component Object Model is polymorphic in the sense that what appears to be the same request can be sent to any interface supporting the requested operation; the interfaces need not refer to objects of the same class. However, unlike models supporting a "conventional" subtyping mechanism for objects having a single interface, the interfaces in Windows Objects remain distinct. Through a pointer to a Y interface, the object cannot be treated as an X, even if the object also has an X interface; instead, the user must explicitly get a pointer to the X interface.

Analysis and Design Methods

SD:	“At design time, a polymorphic invocation is a invocation of one of a set of instance-based published operations, where all of the published operations in the set have the same module name but differing class names. When indicating a polymorphic invocation, the designer is stating that (1) the published operations to be invoked will be selected at run time, and (2) the selection will be based on the type of the instance.”

CD:	[It appears to the present editor that Coad has successfully described a method of ‘object-oriented’ analysis and design without invoking the concept polymorphism.]

RA:	“The same operation may apply to many different classes. Such an operation is polymorphic: that is, the same operations takes on different forms in different classes.”

JA: “Polymorphism means that the sender of a stimulus does not need to know the class of the receiving instance.” See 3. Binding.

WD:	“Polymorphism is the ability of two or more classes of object to respond to the same message, each in its own way.”

MD:	“Polymorphism means the ability to take several forms. In object oriented programming this refers to the ability of an entity to refer at run-time to instances of various classes.” “This kind of polymorphism does not involve objects changing their form a run time, or being converted from one format to another, it simply means that a given entity may refer to objects of various kinds.” “...[E]very ... entity has a static type (class) and the dynamic types it may take are restricted to the descendants of that class. “

EA:	Apparently not used.

FD:	“The same method [may] apply to two different classes, perhaps taking on different implementations (thus making it polymorphic.) “

OA:	“An operation may have more than one method defined for it. ... One common reason for multiple methods is due to differences between the input variables. ... In other words, the same operation can support different types of objects—each with its own method. This phenomenon is known as polymorphism...”

BD:	“... [P]olymorphism ... represents a concept in type theory in which a single name (such as a variable declaration) may denote objects of many different classes that are related by some common superclass. Any object denoted by this name is therefore able to respond to some common set of operations. The opposite of polymorphism is monomorphism, which is found in all languages that are both strongly typed and statically bound, such as Ada.”

HA:	“Polymorphism is the ability of abstractions to share services. It can be defined as ‘a concept in type theory in which a name may denote objects of many different classes related by some common base class. Thus, any object denoted by this name is able to respond to some common set of operations in different ways’ (Booch and Vilot, 1990b). “

NA:	“Polymorphism[:] A mechanism by which a named reference ... can be attached to objects of different type at different points in time.”

�5.	Encapsulation

e.g., how are object boundaries defined?; how many object boundaries or interfaces are there (do subclasses or "friends" get special access to objects)? what are their characteristics?

OODBTG Reference Model

A key concept of the object paradigm is "encapsulation", which is defined as a kind of abstraction that enforces a clean separation between the external interface of an object and its internal implementation.

Users of objects are people or programs which send requests to objects. Users of objects observe the behavior of objects in terms of the operations which may be applied to objects, and in terms of the result objects returned by such operations. An operation may be implemented (i.e., supported or realized) by a variety of different program code and data structures. Encapsulation means that these implementations are not visible to the user of the object, hiding details of whether and what data structures or code are used in an implementation. The importance of encapsulation is that it insulates applications from object implementations allowing them to be modified without requiring applications that use them to be modified.

Some classical object models define a stronger form of encapsulation, in which the states of objects are isolated from each other; the implementation of objects is disjoint between objects; all methods and states belong exclusively to individual objects.

An assumption that attributes or other structural constructs are necessarily implemented as stored data would violate encapsulation. An attribute such as the age of a person, the weight of an assembled object, the circumference of a circle, or the font of a word within a document might be stored in some implementations and computed in others. Violations of encapsulation, if allowed at all, should be made explicit (e.g. PUBLIC data in C++).

OMG Core Object Model

4.2.8 Interfaces of a Type

In the Core Object Model a type exports all of the operations that are defined on it. There is no notion of multiple named interfaces defined on a type that exports less than the full type specification. Visibility attributes such as private, public, subtype_visible, and friends are not supported either. These may be defined by components.

There is also no notion of a program binding to a subschema that restricts a program's access to some subset of the types defined in the system, and for any type within this subset, further restricts access to some subset of the characteristics defined by the type. Subschemas and subschema-specific interfaces to types may also be defined in a component.

4.2.8.1 Example type interface

A type's interface defines the externally visible state and behavior of instances of the type. Behavior is defined as a set of operation signatures. The following example shows the interface portion of an object type definition that illustrates these concepts. The syntax is illustrative only.

type IMAGE

 supertypes: OBJECT

 operations:

 INTEGER get_length (i:IMAGE)

 set_length (i:IMAGE, length: INTEGER)

 INTEGER get_width (i:IMAGE)

 set_width (i:IMAGE, width: INTEGER)

 scale (i:IMAGE, by:FACTOR)

 rotate (i:IMAGE, by:DEGREES)

 IMAGE crop (i:IMAGE, to:SIZE)

end_type

OMG CORBA IDL

Access to the state of CORBA objects is through the operations that make up the objects interface. IDL supports full encapsulation for CORBA objects.

ODMG

All objects are instances of a type which specifies the interface for accessing the object. There is only one interface for a type.

EXPRESS

EXPRESS has no notion of encapsulation. All attribute values of an instance are visible in any context in which the instance itself is visible.

Open Distributed Processing

A fundamental notion of ODP, used extensively. It is not possible to "look inside" any object.

The state of an object is accessible only through invocation of the services supported by the object. Users (i.e., clients) of objects are permitted only to know what the object does, not how it does it.

Encapsulation is enforced by only allowing an object to be accessed through invoking the operations defined in its interface. This kind of de-coupling limits dependencies between objects, permitting them to be re-implemented, modified and extended without affecting existing clients.

Editor's Note: there is a need at this point to describe the ability within the ODP model to define multiple interfaces for the same object.

Management Information Model

A facet of object-oriented design is that of encapsulation. Encapsulation ensures that the integrity of an object is preserved. This requires that all operations to be performed are accomplished by issuing a "message" to the object. That is, the internal operation of a managed object is not visible at the object boundary unless attributes, operations, or notifications are defined to expose this information. The definition of the managed object class specifies what operations can be performed and what consistency constraints are required to maintain the integrity of the managed object. [Part 1]

SQL3

Each component (attribute or function) of an ADT has an encapsulation level of either PUBLIC, PRIVATE, or PROTECTED. PUBLIC components form the interface of the ADT and are visible to all authorized users of the ADT. PRIVATE components are totally encapsulated, and are visible only within the definition of the ADT that contains them. PROTECTED components are partially encapsulated; they are visible both within their own ADT and within the definition of all subtypes of the ADT. SQL3 also supports encapsulation for tables to the extent that views (derived tables) are considered as providing encapsulation.

Matisse

Encapsulation is supported through the use of the object paradigm. The Matisse API allows execution of methods. Attributes may be publicly accessed through the API as in C++, but can be hidden from direct access by the user through constraints as in Smalltalk.

As in all database systems, encapsulation is violated by indexes that allow rapid scan of the database for selection of sets of objects of interest. Matisse allows any attribute of any object to be an "entry point" or index. By default, the attribute value is the symbolic index to the OID of the object. However, the user can create any "entry point" function and sophisticated algorithms can be used to build intelligent indexes. Encapsulation could be violated by an image query, for example. One could provide a drawing or mug shot and the database would return suspects, or a picture of an airplane and the database could return the location of all similar airplanes in recent satellite photos.

C++

C++ provides three levels of protection for data members and member functions within a class. The default protection level is private. A private data member or member function cannot be accessed by any function that is not a member function of that class. The next level of protection is protected. A protected data member or member function is accessible only to other member functions of that class or from classes derived from that class. The least restrictive level of protection is public. public data members and member functions can be accessed by any other function. The protection level of data members and member functions is specified in the member declarations using the keywords public, protected, or private.

public members of a C++ base class do not automatically become public members of the derived class; the base class must be explicitly declared as public to allow this.

Specified non-member functions may be given access to private or protected parts of classes. These functions are specified using the friend keyword, and may be globally defined functions or members of other classes. Whole classes may be declared as friends of another class, in which case every member of the friend class can access the private members of the specified class.

OOCOBOL

Objects may only be accessed through the operations defined in the object's interface. In defining an object, methods can be specified as PRIVATE, RESTRICTED, or PUBLIC. Data can be specified as PRIVATE or RESTRICTED (there is no public data). If the scope of a data (method) name is declared as PRIVATE, this means that the data item (method) can be accessed (invoked) only from methods declared in the same class object or object definition as the data item (method). If the scope of a data (method) name is declared as RESTRICTED, this means that the data item (method) can be accessed (invoked) from methods declared in the same class object or object definition as the data item (method), or from methods declared in a class object or object respectively that inherits from the class definition that contains the declaring class object or object definition. If the scope of a method name is declared as PUBLIC, this means that the method can be invoked from any procedural statement that has access to an object identifier that may contain the class object or object of the class.

�Smalltalk

The approach used in Smalltalk is to encapsulate all objects, whether a complex as a sorted list or as simple as a string, into a single programming entity that includes data and logic. Further, other objects can not invoke the encapsulated data or logic. In order to interact, other objects must send messages to an object’s interface that will cause the object to perform a function that will have a known effect. See also entry under 2.3 Messages.

Eiffel

Features can only be invoked through the public interface of a class. A class's public interface consists of all operations and state that are `exported'. i.e., exported features are public and can be invoked by any class. A feature can also be exported to a select set of classes.

For example, a class may appear as follows:

	class A

	feature {ANY}

		a: INTEGER;

		b: INTEGER;

	feature {A, B, C}

		c: INTEGER;

		d: INTEGER;

	feature {NONE}

		e: INTEGER;

	end; -- class A

Attributes a and b are exported to ANY (the parent of all classes) and therefore all classes that are descendants of ANY. Attributes c and d are public to only classes A (the class itself), B and C. While attribute e is exported to no class (NONE).

Attributes (state) can be exported in a read-only form. This is different to Smalltalk and other similar languages that cannot make state directly accessible to the public.

The implementation details of all operations are hidden in the public interface. Only the signature, an optional header comment and the pre- and postconditions are available in the public interface. Attributes and functions with no arguments also appear identical.

When inheriting there is no form of encapsulation. An inheritance relationship inherits all features unconditionally. The exports status of inherited features is also inherited. However, this export status may be changed (with no restrictions) in the descendant. See also entry under 8. Inheritance and Delegation.

�Emerald

Object creation in Emerald is done via an object constructor, an Emerald expression that, when evaluated, creates a new object. This expression defines the object's representation, and its public and private operations (an example is given in 2.9 communication model). The syntax of an object constructor is:

 object anObject

 % private state declarations

 % operation declarations

 end anObject

An export clause lists the operations that can be called from outside the object; invocation of one of these operations is the only way in which a client can examine or modify the object's state. [RTLB+91] An object has only one interface, in the sense that there are no constructs that have special access to the object. However, as noted under 7. Types and Classes, a client accessing an object via a variable will be restricted to performing the operations defined by the abstract type of the variable, even though the object assigned to the variable may support additional operations. In such cases, the variable's type may in some sense be viewed as defining a different interface to the object.

Cecil

Cecil supports a form of object encapsulation which merges aspects of "classical" object models with its own "generalized" object model capabilities. Fields and methods can be prefixed with public or private declarations that effectively define an object's interface.

Intuitively, a private method is internal to the data abstraction implementation(s) of which it is a part, and only other methods also within the same implementation(s) can invoke that private method. More precisely, a sending method S is granted access to a private method M only if S is considered part of the implementation of which M is also a part. A method is considered part of the implementation of an object if at least one of its formal arguments is specialized on the object. Additionally, to deal with situations involving children accessing or overriding private methods which they inherit from their ancestors, a method is considered part of the implementation of an object if at least one of its formal arguments is specialized on an ancestor or descendant of the object. A method that dispatches on more than one argument is considered part of the implementation of all dispatched arguments, and so is granted privileged access to each of them. (Note that, as described in the entry under 2.6 state, fields resolve to pairs of methods, so access to both state and behavior is covered by these rules.)

SELF

SELF as described in [US87] does not provide encapsulation, in the sense of having separate public and private interfaces. Any object can send a message referencing any named slot, including assignment slots, contained within any other object. This sort of encapsulation could be provided through some technique for achieving the effect of private slots [probably with minimal impact on other key aspects of the language]. SELF, however, does not distinguish between accessing state and accessing behavior, and thus conceals this implementation issue from users.

�System Object Model (SOM)

Access to the state of SOM objects is through the operations that make up the objects interface. Invoking operations on SOM objects can have side effects. SOM objects do have private data that is not accessible by invoking external operations. In addition, it is possible to define class attributes on SOM objects. These attributes are accessed via set and get functions implemented for each attribute and are invoked in the same way as methods.

OLE Component Object Model

Objects may only be accessed through the operations defined in one of the object's interfaces. Moreover, given a reference to one interface, only the operations in that interface may be used. Operations in another interface may only be used after first obtaining a reference to that interface.

Analysis and Design Methods

SD:	“Note that in this architecture we have defined the published interface of the class in terms of event takers [a kind of method], rather than the actions (or even processes that make up the action.) This provides true semantic encapsulation of the state of an instance.”

CA:	“A principle, used when developing an overall program structure, that each component of a program should encapsulate a single design decision... The interface to each module is designed in such a way as to reveal as little as possible about its inner workings.[quoted from The Oxford Dictionary of Computer Science]” The second sentence gives the sense used.

RA:	“Encapsulation (also information hiding) consists of separating the external aspects of an object [instance], which are accessible to other objects [instances], from the internal implementation details of the object, which are hidden from other objects.”

JA:	“The behavior and information are encapsulated in the object [instance]. the only way to affect the object is to perform operations on it. Objects thus support the concept of information hiding, that is , they hide their internal structure from their surroundings.”

WD:	Encapsulation is “building ... a conceptual barrier around some collection of things. ... Encapsulation transforms many into one by adding a new layer of meaning.”

“The object has a public interface and a private representation, and keeps these two facets quite distinct. This principle is known as information hiding. Information-hiding allows us to remove from view some portion [emphasis added--ed.] of those things which have been encapsulated by the object.”

MD:	“The information hiding principle may be stated as follows: All information about a module should be private to the module unless it is specifically declared to be public. “ In certain cases it is useful to hide a feature from all but one or a few classes.

EA:	Apparently not used. Nothing in the analysis model is hidden. There are no attributes. An objects may interact with itself.

FD:	“Data abstraction: The details of a classes representation are visible only to its methods.”

OA:	“... [E]ncapsulation provides a protective encasement around each object’s data. The object’s data becomes accessible only by particular operations associated with the object.”

BD:	“Encapsulation is the process of compartmentalizing the elements of an abstraction that constitute its structure and behavior; encapsulation serves to separate the contractual interface of an abstraction and its implementation.” “Encapsulation is most often achieved through information hiding, which is the process of hiding all the secrets of an object that do not contribute to its essential characteristics; typically, the structure of an object is hidden, as well as the implementation of its methods.”

HA:	“At the implementation level, code and data can be encapsulated together into a class (i.e., gathered together in a code module) yet remain visible to other classes. ... On the other hand, information hiding requires the visibility of data to be restricted to within the (encapsulated) module. In other words, encapsulation does not guarantee information hiding. Similarly, information hiding does not necessitate encapsulation of the concept in a module. In OT the aim is to use both mechanisms to encapsulate a concept within one module and to hide the details of that concept’s implementation via information hiding. “

NA:	“Information hiding[:] A technique whereby implementation details ... are hidden from the authors of client modules, who are instead presented with a public interface.”

�6.	Identity, Equality, Copy

e.g., what things have identity: objects, or interfaces?

OODBTG Reference Model

Each object has a unique, immutable "identity" which provides a means to denote or refer to the object independent of its state or behavior. The definition of identity includes the concepts of identity compare operation, logical identifiers, object identifiers, and object creation.

The identity concept can be described in terms of a primitive "identity compare operation" "==" such that, if X and Y are the same object, X == Y. Some consequences of identity compare are:

 o h(X) and h(Y) have the same result for any operation h(), where

 h() has no "side effects" (i.e., h() is not a state-changing method), and

 o the mathematical set {X, Y} has cardinality 1.

An abstract representation of object identity is by means of a "logical identifier" ("LID"), which is an implementation-free token that is uniquely associated with a specific object. The term "object identifier" ("OID") refers to a specific implementation of a logical identifier. OIDs are normally system-generated, with a fixed format, and are not changeable by the user. In models which consider literals or extensional sets to be objects, such objects have LIDs but possibly not OIDs.

An LID is meaningful within some limited scope which we shall call an "object space". Object creation occurs within an object space. Each creation event results in a LID that identifies the created object uniquely within that space. The creation event creates a representation of the object in the space.

An LID is unique within a particular object space. If X and Y are objects within an object space, X == Y if X and Y have the same LID. In many implementations, simple comparison of OID and literal representations is used as the basis for "==". An LID from one object space is not a valid LID in another object space. Identity comparison between LIDs only makes sense when they are defined in the same object space. Object identifiers are handled differently in different systems when objects are exported, imported, replicated, versioned, or distributed.

OMG Core Object Model

4.2.2 Object Identity and Object Identifiers

Each object has a unique identity that is distinct from and independent of any of its characteristics. Characteristics can vary over time whereas identity is constant.

In the Core Model, each object has an identifier that provides a means to denote or refer to the object. This identifier is called an OID3. OIDs label (or refer to) objects. The set of all OIDs is denoted as Obj.

The Core Object Model does not require systems to support a comparison operation for OIDs. In other words, you may not be able to ask if two OIDs refer to the same object. However, if two OIDs, A and B, refer to the same object, then invoking an operation with A as an argument is the same as invoking that operation with B in place of A.

The implementation of OIDs is not within the realm of the Object Model. The Object Model does not specify if OIDs are fixed length or varying in size. For example, there is no assumption that OIDs are 32, 64, or 128-bit strings. Furthermore, the Model does not care about the internal structure of an OID. For example, it does not state that the location of the object is encoded within an OID in some way known to the system or its users. OIDs are opaque as far as the Object Model is concerned.

3 OIDs in the Object Model denote the same concept as object references in CORBA.

OMG CORBA IDL

An object reference is used to refer to a CORBA object. While the object reference itself can be duplicated there are no operations supporting copying or comparing CORBA object implementations. This is outside the scope of the CORBA specification.

ODMG

All denotable objects have an identity. For literals this identity is "typically the bit pattern that encodes its value". For objects, identity "uniquely distinguishes the object from all other objects within the domain in which the object was created" and is independent of any state of the object.

Operation Equal? is defined for type Denotable_Object.

In order to copy objects, copy operations must be defined as part of the object's type. For Collection object types, the copy operation is a shallow copy - returning a new collection with the same elements as the copied collection. For object type Structure, the copy operation is also a shallow copy.

Literals are copied by assignment. "Assignment of an object of type Structured_Literal, or any of its subtypes, to another object will create a (logical) copy of the literal" (p.36).

EXPRESS

The specification of an entity data type in the EXPRESS language describes a domain. The individual members of the domain are assumed to be distinguished by some associated identifier which is unique. EXPRESS does not specify the content or representation of these identifiers. [ISO DIS-10303:11]

The language supports two notions of equality, identity equality and deep equality. Most operations in the language make use of the latter rather than the former. For example, set uniqueness is based on deep [un]equality, and assignment and parameter binding are based on deep copying. It is likely that future versions of EXPRESS will provide more operations based on identity.

Instances of the primitive data types and of the aggregate data types do not have identifiers.

Open Distributed Processing

The RM-ODP Descriptive model recognizes the notion of identity (and all naming actions in general) only relative to a given naming context. A naming context is defined as a relation between a set of names and a set of entities, whereby the set of names belongs to a single name space. An identifier is defined as an unambiguous name of an entity in such a context.

As an object is a model of an entity, and an object is distinct from any other object, it follows that every object has a unique identity (the identity of a naming context and of the object within that context). Although naming is explicitly defined only for entities, RM-ODP refers in addition to action identities [it may also be possible to consider an action as an entity because an action is a thing of interest, and an entity is defined as any concrete or abstract thing of interest]. As an interface is a set of (inter)actions, it has an identity; there exists also a reference in RM-ODP to a unique interface. As behavior is a collection of actions, it also has an identity.

Establishing object equality by comparing their properties (e.g., behaviors) is possible only at some abstraction level whereby details irrelevant for this level are suppressed.

Management Information Model

The process of defining managed object classes requires the assignment of globally unique identifiers, known as object identifiers, to various aspects of the managed object class, such as managed object class name, attribute types, etc. The values of these identifiers are used in management protocols to uniquely identify aspects of managed objects and their associated attributes, operations, and notifications. It is therefore a necessary precursor to the development of a managed object class definition that the standards body or organization concerned should identify or establish a suitable registration mechanism that is capable of issuing object identifier values for its use...Once an item of management information has been assigned an object identifier value, it is a requirement that any revision of the definition of that item shall not alter the semantics of the information...All object identifier values registered in systems management Recommendations/Standards are allocated under the arc (joint-iso-ccitt ms(9))

[Part 4]

A managed object of one class can contain managed objects of the same or different classes. This relationship is called containment. This containment relationship is a relationship between managed object instances, not classes. A managed object is contained within one and only one containing managed object. Containing managed objects may themselves be contained in another managed object...The containment relationship is used for naming managed objects. Names are designed to be unambiguous in a specified context; for management this context is determined by the containing object... The name of an object that is unambiguous in a local naming context, may not be so in some larger naming context... The top level of the naming tree is referred to as root which is a null object (i.e., an object with no associated properties) that always exists....Supported name bindings are not a property of the object class as a whole, and individual instances of the same object class may use different name bindings. ...Each managed object class that can be instantiated must include at least one attribute suitable for ...unambiguously identifying a single managed object within the scope of its superior object... Such an attribute must be part of a mandatory package, it must be testable for equality and its semantics must permit its value to remain fixed for the lifetime of each managed object that uses it for naming. When a managed object is deleted, the value assigned to its naming attribute becomes available for reuse, to identify subsequent managed objects created within the same superior object. [Part 1]

SQL3

By default, testing corresponding attribute values for equality serves to test for the equality of two ADT instances. Alternatively, the specification of an ADT supports declaration of a function to be used to determine equality of two ADT instances.

Two values are said to be not distinct if either: both are the null value, or they compare equal according to [the SQL3] "< comparison predicate >". Otherwise they are distinct. Two rows (or partial rows) are distinct if at least one of their pairs of respective values is distinct. Otherwise they are not distinct. The result of evaluating whether or not two values or two rows are distinct is never unknown.

Matisse

Matisse supports the principle that first class objects are identical if their OIDs are equal. They are equal if their attributes have the same values.

The following caveats apply:

Matisse supports media fault tolerance through object replication across multiple disk drives. In this case, replicated objects are identical.

On the other hand, if the user makes a copy of an object, it will receive a new OID but retain the same attribute values. In this case there is equality, but not identity.

C++

C++ supports both value and reference semantics (and supports both variables that "contain" objects, and variables that contain pointers or references to objects). In reference semantics, assignment essentially copies a pointer (or reference) to the object. In value semantics, assignment copies the value itself. In C++, the assignment operator can be used to copy the object itself, or a reference to the object can be created, and then copied. (The C++ assignment operator itself can be overridden, but the default meaning is to copy the object itself). By contrast, Smalltalk effectively always uses reference semantics for assignment, using alternative operations (shallowCopy, deepCopy) for value semantics. [Str92] describes the implementation of cloning, shallow copy, and deep copy operations in C++ using the basic facilities.

OOCOBOL

OO COBOL defines the concepts of object reference and object identifier. In OO COBOL, an object reference is a value that uniquely identifies an object for the lifetime of the object. No two objects have the same object reference, and every object has at least one object reference. Note that it is permitted to have more than one object reference for any given object, provided the requirements of the specification are fully met, but it is sufficient and in general expected that a given object will have precisely one object reference.

In OO COBOL, an object identifier is an identifier (essentially a data item name) that identifies an object. It may be declared in the Data Division as a data item declared with USAGE IS OBJECT REFERENCE, or in the Environment Division. There are also three predefined object identifiers, SELF, SUPER, and NULL. SELF and SUPER both reference the object of the currently executing method, and are used in invoking other methods associated with that object from within that method. If SUPER is used, method binding will ignore all methods defined in the same class as the executing method, and all methods defined in any class which inherits from that method.

The CBL-NULL class is a predefined class. There are no instances of this class. The NULL object is the CBL-NULL class object. A reference to the NULL object is placed in every data item declared with USAGE IS OBJECT REFERENCE when storage for that data item is allocated, except when that data item is declared as a redefinition of another data item. Invoking any method on the NULL object causes the exception EC-OO-NULL to be raised.

Object identifiers may be compared for equality or inequality. Two object identifiers are equal if the objects referred to by those identifiers are the same object.

Smalltalk

Smalltalk provides unique identity for all objects. Objects can be tested for equivalence (Are the objects being compared the same object?) and equality (every object may implement its own definition of equality).

Copying of objects can be performed as a deep copy (object’s structure and the objects pointed to by its variables are copied) or shallow copy (objects pointed to by variables, their variables are not copied, but are shared with the original object).

Eiffel

All Eiffel objects are given an immutable, unique identity.

Objects can be copied using the operation `copy' from class ANY. This form of copy copies all fields from one object onto another. Both the source and target objects must be non void. The copy operation can be redefined in subclasses to conform to local behavior. There is also a `frozen' version that cannot be redefined called `standard_copy'.

A copy can occur in two forms: shallow or deep copy. A shallow copy will copy the objects fields including the current contents of those fields. If the content is a reference to another object, no attempt is made to recursively copy the objects attached to the reference.

A deep copy, on the other, hand will recursively copy the entire object structure beginning with the source object. This is performed using the operation `deep_copy'.

Objects can also be `cloned'. i.e., A clone will return a new object that is field by field equivalent to another. For example, the operation:

	x := clone (y)

will attach a new object to x that is a clone of y. X, in this case, does not need to be attached to an object before the clone, as in a copy operation. There is also a deep_clone operation that will recursively clone the entire object structure of y.

Clone is generally defined in terms of copy and so its definition is frozen and cannot be redefined.

The field-by-field equality of two objects attached to entities x and y can be determined by the expression:

	equal (x, y)

The standard version of this expression (as defined in ANY) has a number of rules that determine the result [1]:

	1.	If both x and y are Void then the result is true.

	If one is Void and the other is not then the result is false.

	2.	If both x and y are bit sequences then equality is

	determined by bit-by-bit equality. Cases 3 to 6 assume x and

	y are not bit sequences.

	3.	If y is not the same type as x or a descendant type then

	the result is false. Cases 4 to 6 assume y conforms to x.

	4.	If y is a simple type (character, integer, boolean real,

	double or pointer) then the result is true if both objects

	have the same value. After possible coercion of the heavier type.

	5.	If x and y are special (strings or arrays) then the value

	is true if the sequences of values have the same length and each

	field is (recursively) identical.

	6.	If x and y have the same fields and each field is identical.

	i.e., every corresponding reference field of x and y points to

	the same object and every object field of y is recursively equal

	to the corresponding field of x.

There is also a deep_equal that will recursively test the equality of each reference field of x and y in case 6.

Emerald

In Emerald, each object has unique identity. The representation of this identity depends on the object's implementation (see entry under 9.6 other for a description of Emerald's object implementation styles). To support remote referencing and mobility in a distributed system, object references must be location independent. Direct objects are compiled inline or allocated directly in invocation records, and hence can be referenced by offset within the object or data structure. All other objects are referenced by the address of a node-local object descriptor. The object descriptor contains the object's unique ID, a location hint if the object is remote, and a pointer to its data area, process, and code if the object is locally resident. An object descriptor must exist on a node as long as any references to the corresponding object remain on that node. Object descriptors are heap-allocated and garbage collected.

Each node also has an object table that contains an entry for every remotely referable object on that node. The object table is used to determine if an object exists on a node, and if so to provide the address of its object descriptor. [BHJL86]

Cecil

In Cecil, each object has unique identity.

SELF

Each SELF object has a unique identity which provides a means to refer to the object independent of its state or behavior. SELF represents object references using direct tagged pointers, rather than indirectly through an object table. Cloning (shallow-copying) produces a new object with a distinct identity from its prototype.

System Object Model (SOM)

When a SOM object is created the SOM run-time returns a pointer to the object. It is left to higher level abstractions which build on SOM to define object identity, equality and copy operations.

OLE Component Object Model

Object references (pointers) in Windows Objects are not references to the object itself, as in C++, but rather are pointers to one of the object's interfaces. In fact, there is no specific way to identify a specific object (i.e., it is only possible to obtain references to interfaces, not whole objects). Given a pointer to an interface, the user can access only member functions contained in that interface. The user can never have a pointer to the whole object (because there is no direct user-visible concept of "whole object"), so there is no direct access to data members, and no concept of "friend" as in C++. Through the IUnknown interface, a user can obtain pointers to other interfaces that the object also supports, but this means obtaining a different pointer that refers (indirectly) to the same object. Each pointer to an interface points to a function table in the object, and each table contains only member functions for a specific interface. Because a pointer to a Windows Object always points to a function table, such a pointer can also be used from within programs written in languages other than C++, such as C or assembly code.

Every interface is associated with an interface identifier, or IID. An IID is a special case of a universally unique identifier, or UUID. The universally unique identifier is also known as the globally unique identifier, or GUID. GUIDs are 128-bit values created with a DEFINE_GUID macro. Every interface and object class uses a GUID for identification. As described in the OLE SDK, Microsoft will allocate one or more sets of 256 GUIDs for a developer's exclusive use on request. Alternatively, a user with a network card can run a tool UUIDGEN.EXE that will provide a set of 256 GUIDs based on the time of day, the date, and a unique number contained in the network card [Bro94a].

OLE defines IIDs for every standard interface along with class identifiers (CLSID) for every standard object class. When a function is called that asks for an IID or CLSID, what is actually passed is a reference to an instance of the GUID structure that exists in the process space (using the reference types REFIID or REFCLSID). To compare two GUID, IID, or CLSID values for equality, the functions IsEqualGUID, IsEqualIID, and IsEqualCLSID are used. In C++, an overloaded "==" operator can be used.

The QueryInterface function must always behave according to specific rules which, among other things, implement an indirect concept of object identity. First, any call to QueryInterface through any interface on a given object asking for a pointer to the IUnknown interface always returns an identical pointer value. This means that, given two arbitrary interface pointers, it is possible to determine whether they belong to the same object by asking each for an IUnknown pointer and comparing the returned pointer values. If they match, both interface pointers refer to the same object. Second, after an object is created, the interfaces it supports are static. If QueryInterface succeeded for a particular interface at one point in the object's lifetime, an identical call to QueryInterface at a later time will also work. (This does not mean that the exact pointer values returned will be identical, just that the interface is always available). The static set of available interfaces applies to a specific object, not an object class. That is, two objects of the same class might not both support the same interfaces, but during the lifetime of each, the interfaces they each support will remain static. Finally, as along as an object is in existence, all interface pointers obtained on that object must remain valid, even if the Release function has been called through those pointers.

Analysis and Design Methods

Note: ‘Equality’ and ‘copy’ do not appear to be used by any of the authors on analysis and design, except for Booch and Coleman et al. Meyer uses them in discussing language.

SA:	All objects have identity, based on values of primary identifier attributes. No concept of equality of objects. “An identifier is a set of one or more attributes whose values uniquely distinguish each instance of an object [class.]”

CA:	“...[D]eferred to design is the selection of actual identifications mechanisms... Every Object needs such identifiers. ...each Object has an implicit identifier” in analysis.

RA:	“Explicit object identifiers are not required in an object model. Each object has its own unique identity.”

JA:	“Each instance also has a unique identity.”

WD:	Not used.

MD:	See the separate matrix entry on the Eiffel language.

EA:	Not used.

FA:	“An object is thing that can be distinctly identified.” “[T]here can be many distinct objects with the same attribute values.”

In the data dictionary and the schemata “[t]he infix operator ‘= =‘` is used to compare the identity of two references to objects: Do the references refer to the same object or not? The infix operator ‘=‘ is used to compare the contents of two objects, by comparing their attributes for equality. If the equality of objects depends not only on their attributes, but on relationships in which they are involved, a definition for the equality operator should be supplied.”

OA:	Not used.

BD:	“Identity is that property of an object that distinguishes it from all other objects.” Equality is determined in accordance with the possibilities provided by the implementation language. The effect of copying is determined in accordance with the possibilities provided by the implementation language. The relationship of assignment to copying is discussed as a language and implementation issue.

HA:	“Objects have identity”

NA:	“The concept of a unique identity which distinguishes an object from all other objects, regardless of whether their internal structures and values coincide or not. All objects are created with a unique identity in an object oriented system, so the user need not worry about introducing access keys.”

�7.	Types and Classes

OODBTG Reference Model

The object paradigm deals with both abstract, external behavior, and implementation. Objects may be grouped into types by commonality of behavior (interface), and into classes by commonality of implementations7.

A "type" defines a protocol shared by a group of objects, called "instances" of the type. The type itself may be an object.

A "class" defines an implementation (methods and data structures) shared by a group of objects. A class may be considered an implementation of a type. There may be several classes (implementations) per type. The class itself may be an object; methods may also be objects.

The "signature" of an operation identifies the number and types of the operation's arguments and results. In classical object models, an operation is associated with the type of its recipient, and a method is associated with the class of its recipient. In generalized models, an operation is associated with the types of its parameters, and a method is associated with the classes of its parameters. Thus, in generalized models, operations and methods may be "jointly owned" by multiple types and classes. In general, objects can have multiple types and classes, and these can change. Not all models permit this.

A "parameterized type" is the result of a compile-time operation that takes classes as parameters and returns one or more derived classes, e.g., set<employee> might return "class set-employee," the definition of a set class corresponding to a set of employee class instances.

7 Within this section, the terms "type" and "class" are used prescriptively. While it is important to define precisely the terms "type" and "class," almost everywhere in this document except this section, the terms are used interchangeably. The term "class" is used uniformly in the rest of the document because it is used in X3J13 Common Lisp (CLOS), X3J16 C++, and Smalltalk. Some programming languages like C++ define "type" to be a restricted form of class without encapsulation, inheritance, and behavior and "class" to include these object concepts.

OMG Core Object Model

4.2.1 Basic Concepts

 ...

Objects are created as instances of types2 (for example, integer, person, ship, stack). A type characterizes the behavior of its instances by describing the operations that can be applied to those objects. Types can be related to one another through supertype/subtype relationships. ...

2 Saying that an object is 'an instance of type T' is the same as saying that an object is 'of type T' in this model.

4.2.3 Object Types

Objects support only certain operations. The operations applicable to an object collectively characterize its behavior. Types describe these operations and thus characterize the behavior of objects. Objects are created as instances of their types and in the Core Object Model objects do not change their type.

Each operation has a signature, which consists of a name, set of parameters4, and set of results (see section 4.2.5). The set of operation signatures defined on a type is called the type's interface. A type's interface includes signatures that are inherited from supertypes (see section 4.2.6). Every instance of a type satisfies the interface of that type.

Types are arranged into a type hierarchy that forms a directed acyclic graph. The root of this type hierarchy is the type Object. Applications introduce new types by subtyping from Object. Having a single root allows programs to specify that an argument can take an object of any type. The set of all object types is referred to as OTypes.

A type is distinct from its interface and its set of instances (extension). Both its interface and extension can change over time, without changing the identity of the type. Although the Core defines types and operations as concepts, systems that comply to the model need not provide objects that correspond to these concepts. Types and operations as objects will be considered for inclusion in the Meta_data component of the OMG OM Components Guide.

Editor's note: the OMG OM Components Guide exists in draft form only.

4 In the Core Model, the term parameter is used when referring to the declaration of an operation's interface. Argument is used when referring to an operation invocation.

4.2.9 Implementation

As noted earlier, the Object Model formally specifies only the semantics of objects. It has nothing to say about their implementation. It neither requires nor excludes systems in which there is more than one implementation for a given type. It permits systems in which each object type has a separate implementation, or in which clusters of related types share an implementation.

The combination of a type specification and one of the implementations defined for that type is termed a class. An individual object, at any given point in time, is an instance of one class. The model makes no statement about whether an object must retain the implementation chosen for it at the time it was created or whether an object can change implementations over its lifetime. Moreover, implementations may vary among different instances of a type, and even for the same instance over time.

Allowing multiple implementations for a given type specification seems necessary to support several domains including databases that span networks that include machines with different architectures, and mixed-language environments. But even in a single- machine, single-language environment there are cases where the programmer wants to have available different implementations of a type based on different data structures or algorithms. In the absence of multiple implementations for a single type, the type programmer would be forced to abuse the subtype mechanism to achieve this differentiation; for instance, by defining a distinct subtype for each distinct implementation of a type. Set_as_Btree and Set_as_Linked_List would be introduced, for example, as subtypes of the type Set, rather than as alternate implementations for the type Set.

OMG CORBA IDL

A type is an identifiable entity with an associated predicate defined over values. A value satisfies a type if the predicate is true for that type. A value that satisfies a type is called a member of the type. The extension of a type is the set of values that satisfy the type at any particular time [CORBA Specification 2.2.4 Types].

Types are used in signatures to restrict a possible parameter or to characterize a possible result. An object type is a type whose members are objects. Basic data types are 16 and 32 bit signed and unsigned 2's complement integers, 32 bit and 64 bit IEEE floating point numbers, characters as defined in ISO Latin-1 (8859.1), a boolean type taking the values TRUE and FALSE, and 8-bit opaque data type, guaranteed to not undergo any conversion during transfer between systems, enumerated types consisting of ordered sequence of identifiers, a string type which consists of a variable-length array of characters, a type any which can represent any possible basic or constructed type [CORBA Specification 2.2.4 Types].

Constructed types consist of a record type(called struct), consisting of an ordered set of (name, value) pairs, a discriminated union type consisting of a discriminator followed by an instance of a type appropriate to the discriminator value, a sequence type which consists of a variable-length array of a single type, an array type which consists of a fixed-length array of a single type, and an interface type which specifies the set of operations, which an instance of that type must support [CORBA Specification 2.2.4 Types].

�ODMG

A type is a specification; it can have one or more implementations. All types are instances of type Type. A class is the combination of a type specification and a specific implementation. The model is strongly typed.

The set of all instances of a type is the 'extent' of the type. 'Abstract types' are not instantiable - they specify characteristics that can be inherited by subtypes but do not define any implementations.

Two objects are compatible if they are instances of the same declared type or if one is an instance of a subtype of the other. Two structured literals have the same type if they have the same structure at every level and the corresponding atomic types are the same. Subtyping for structured literals requires the same structure at each level and the type of each subobject of the subtype to be the same as, or a supertype of, the corresponding subobject of the supertype. No implicit conversions are given for either objects or structured literals. Some explicit conversions are given in the object query language specification.

EXPRESS

The fundamental constructs of EXPRESS are entities and types. While both are considered to be types, entities differ from the other types in three respects: 1) a subtype/supertype relation is defined only on entity types, 2) entity instances have identifiers while others do not, and 3) entity instances can have a significantly more complex internal structure. The types in EXPRESS include the usual primitive types (integer, string, etc.) as well as enumeration, aggregation, and select (union) types. User-defined types are also supported, and can be founded on any types other than entities.

An entity type is defined by a set of attributes. An attribute has an associated value (or none) for each instance of the entity type.

EXPRESS does not require the subtypes of a particular supertype to be disjoint; thus, it is possible for and instance of the supertype to be an instance of two or more subtypes simultaneously. The language allows the ways in which the subtypes may overlap to be constrained using the so-called supertype expression. For example, it is possible to state that "these two subtypes are disjoint" or that "an instance of the supertype must be an instance of at least one of these three subtypes, and also of no more than one of these four subtypes".

Open Distributed Processing

A fundamental notion of ODP, used extensively.

A type is defined by a set of conditions and constraints, known as a predicate. An object instance is said to be of a particular type if it satisfies the predicate. A type therefore identifies a collection of object instances (i.e., the instances that satisfy the predicate). Conversely, every arbitrary collection of object instances defines a type.

Strengthening a predicate (i.e., adding further conditions), defines a subtype. Under these circumstances the original (weaker) predicate is said to define a supertype. Any object instance satisfying the subtype predicate will also, by definition, satisfy the supertype predicate. If a type is thought of as identifying a set of instances, then a subtype identifies a subset of those instances. Each of subtype may in turn be used to generate further subtypes. Therefore, the subtyping relationship defines a type hierarchy.

It is necessary to describe the information associated with modeling concepts, irrespective of the actual specification language. This is accomplished through a template or a "form'' which supplies a syntactic framework to present the information employing these concepts.

Among the many possible groupings of object instances, some will be of greater interest than others. ODP allows these interesting collections of objects to be explicitly identified and named, through the use of template types. A template type is a particular example of a type, carefully chosen by the specifier to identify a specific group of objects known as a class. The template type defines the type of each object instance belonging to the class.

To provide a completely general model of classes, a template type is modeled as a template and associated instantiation rules. The template specifies the common features of the object instances belonging to the class, while the instantiation rules specify how to generate instances from the template. Together they specify the template type. Note that, in practice, the instantiation rules will normally be fixed for a given template specification language in a given environment. Under these circumstances, template type becomes synonymous with class template.

A subclass is defined by incrementally modifying the class template. The class, corresponding to the original template, is termed the superclass. Instances of the subclass do not necessarily form a subset of instances of the superclass. That is, a subclass does not necessarily form a subset of instances of the superclass and a subclass does not necessarily define a subtype. This depends upon the nature of permissible incremental modifications. If the class predicate can only be strengthened by incremental modifications to the class template, then the type of a subclass will correspond to a subtype of the superclass' type. If, however, the predicate can be arbitrarily modified, then this relationship will not necessarily hold.

In the same manner as types, classes can be arranged in a class hierarchy according to the superclass-subclass relationship.

Management Information Model

Each managed object is an instance of a class that includes all managed objects that share the same definition. A distinguished name is used to name each managed object unambiguously...The definition of a managed object class ... consists of:

- The position of the managed object class in the inheritance hierarchy.

- A collection of mandatory packages of attributes, operations, notifications, and behavior.

- A collection of conditional packages of attributes, operations, notifications, and behavior, together with the condition under which each package will be present. [Part 1]

One managed object class is specialized from another managed object class by defining it as an extension of the other managed object class. Such an extension is made by defining further packages that include one or more of the following:

-new management operations

-new attributes

-new notifications

-new behavior

-extensions to the characteristics of the original managed object class.

A managed object class that is specialized from another managed object class is known as a subclass of that class (its superclass). One managed object class, called top, is designated as the ultimate superclass in the class hierarchy. Top is an uninstantiable managed object class. [Part 1]

A managed object class defines the characteristics of a type of physical or logical resource. Instances of a managed object class exist to represent specific instances of a resource. Therefore, a managed object is an instance of a managed object class. The terms "object" and "object instance" are synonymous.

A managed object class is characterized by one or more packages. A package is a collection of properties of that managed object class. Each consists of behavior definitions, attributes, attribute groups, actions, and notifications. When a managed object class definition includes a package, a managed object of that class exhibits all the characteristics stated in the package. Additionally, a package included in a managed object class definition may be mandatory or conditional.

If the same characteristic, e.g., attribute, is present in two or more packages of the same managed object class definition, only one copy of the characteristic may be present in an instance of that class.

A managed object class may be compatible with another managed object by having the same characteristics as that other managed object class (the compatible class), and optionally extended characteristics. The compatible class may be one of the superclasses of that managed object's class in the inheritance hierarchy; however, this is not a requirement. The extended managed object must include all of the mandatory characteristics (i.e., attributes, attribute groups, management operations, and notifications) that would be present in an instance of the compatible managed object class; however the mandatory packages of the extended managed object do not have to be related to the mandatory packages of the compatible class. Additional rules of compatibility are found in [ISO/IEC 10165-1, MIM].

SQL3

The parts of SQL3 that provide the primary basis for supporting object-oriented structures are extensions to its type facilities, specifically:

•	user-defined types (ADTs, named row types, and distinct types)

•	type constructors for row types and reference types

•	type constructors for collection types (sets, lists, and multisets)

•	user-defined functions and procedures

•	support for large objects (BLOBs and CLOBs)

SQL3 also supports a number of built-in scalar types.

One of the basic ideas behind the object facilities is that, in addition to the normal built-in types defined by SQL, user-defined types may also be defined. These types may be used in the same way as built-in types. For example, columns in relational tables may be defined as taking values of user-defined types, as well as built-in types.

The simplest form of user-defined type in SQL3 is the distinct type, which provides a facility for the user to declare that two otherwise equivalent type declarations are to be treated as separate data types. The keyword DISTINCT used in an declaration indicates that the resulting type is to be treated as "distinct" from any other declaration of the same type. For example, if two new types are declared as:

 CREATE DISTINCT TYPE us_dollar AS DECIMAL(9,2)

 CREATE DISTINCT TYPE canadian_dollar AS DECIMAL(9,2)

any attempt to treat an instance of one type as an instance of the other would result in an error, even though each type has the same representation.

A user-defined abstract data type (ADT) definition encapsulates attributes and operations in a single entity. In SQL3, an abstract data type (ADT) is defined by specifying a set of declarations of the stored attributes that represent the value of the ADT, the operations that define the equality and ordering relationships of the ADT, and the operations that define the behavior (and any virtual attributes) of the ADT. Operations are implemented by procedures called routines. ADTs can also be defined as subtypes of other ADTs. A subtype inherits the structure and behavior of its supertypes (multiple inheritance is supported). Instances of ADTs can be persistently stored in the database only by storing them in columns of tables. An example ADT declaration from [Mat95] is:

CREATE TYPE employee_t

 (PUBLIC

 name CHAR(20),

 b_address address_t,

 manager employee_t,

 hiredate DATE,

 PRIVATE

 base_salary DECIMAL(7,2),

 commission DECIMAL(7,2),

 PUBLIC

 FUNCTION working_years (p employee_t) RETURNS INTEGER

 <code to calculate number of working years>,

 PUBLIC

 FUNCTION working_years (p employee_t, y years) RETURNS employee_t

 <code to update number of working years>,

 PUBLIC

 FUNCTION salary (p, employee_t) RETURNS DECIMAL

 <code to calculate salary>

);

ADTs are completely encapsulated; only attributes and functions defined as PUBLIC are accessible from outside the ADT definition. For each attribute (such as name), an observer and mutator function is automatically defined. Virtual attributes (such as working_years) can also be defined. These do not have stored values; their behavior is provided by user-defined observer and mutator functions that read and define their values (salary is a read-only virtual attribute). ADT instances are created by system-defined constructor functions. The instances created in this way have their attributes initialized with their default values, and can be further initialized by the user by invoking mutator functions, as in:

BEGIN

 DECLARE e employee_t;

 SET e..working_years = 10;

 SET y = e..working_years;

 SET z = e..salary;

END;

The expression e..working_years illustrates the dot notation used to invoke the working_years function of the ADT instance denoted by e. Users can also define specialized constructor functions which take parameters to initialize attributes.

A row type is a sequence of field name/data type pairs resembling a table definition. Two rows are type-equivalent if both have the same number of fields and every pair of fields in the same position have compatible types. The row type provides a data type that can represent the types of rows in tables, so that complete rows can be stored in variables, passed as arguments to routines, and returned as return values from function invocations. This facility also allows columns in tables to contain row values. An example is:

CREATE TABLE employees

 (name CHAR(40),

 address ROW(street CHAR(30),

 city CHAR(20),

 zip ROW(original CHAR(5),

 plus4 CHAR(4))));

INSERT INTO employees

VALUES(‘John Doe’, (‘2225 Coral Drive’, ‘San Jose’, (‘95124’, ‘2347’))));

A named row type is a row type with a name assigned to it. A named row type is effectively a user-defined data type with a non-encapsulated internal structure (consisting of its fields). A named row type can be used to specify the types of rows in table definitions. For example:

CREATE ROW TYPE account_t

 (acctno INT,

 cust REF(customer_t),

 type CHAR(1),

 opened DATE,

 rate DOUBLE PRECISION,

 balance DOUBLE PRECISION,

);

CREATE TABLE account OF account_t

 (PRIMARY KEY acctno

);

A named row type can also be used to define a reference type. A value of the reference type defined for a specific row type is a unique value which identifies a specific instance of the row type within some base (top level) database table. A reference type value can be stored in one table and used as a direct reference (“pointer”) to a specific row in another table, just as an object identifier in other object models allows one object to directly reference another object. The same reference type value can be stored in multiple rows, thus allowing the referenced row to be “shared” by those rows. For example, the account_t row type defined above contains a cust column with the reference type REF(customer_t). A value of this column identifies a specific row of type customer_t. The value of a reference type is unique within the database, never changes as long as the corresponding row exists in the database, and is never reused.

In general, the value of a reference type such as REF(customer_t) can refer to a row in any table having rows of type customer_t. If a SCOPE clause is specified in the definition of a table, such references are restricted to rows in a single table, as in:

CREATE TABLE account OF account_t

 (PRIMARY KEY acctno,

 SCOPE FOR cust IS customer

);

In this case customer_t rows referenced in the cust column must be stored in the customer table. Use of SCOPE does not imply any referential integrity constraint.

References can be used in path expressions (similar to those used in some other object query languages), that permit traversal of object references to “navigate” from one row to another. Such expressions can also include the invocation of functions on ADT instances. An example is:

SELECT a.cust->name

 FROM account a

 WHERE a.cust->address..city = “Hollywood”

 AND a.balance > 1000000;

In the SELECT statement, a.cust->name represents:

1.	the selection of the cust column’s value (an instance of type REF(customer_t)) from the row denoted by a (a row of type account_t)

2.	the traversal (dereference) of that instance of type REF(customer_t) to the row of type customer_t it refers to (-> is a dereferencing operator)

3.	the selection of the name column from the referenced customer_t row.

In the WHERE clause, a.cust->address..city represents a similar process, identifying the address column of the referenced customer_t row, and then applying the city observer function to the ADT instance found in the address column.

Collection types for sets, lists, and multisets have also been defined. Using these types, columns of tables can contain sets, lists, or multisets, in addition to individual values. For example:

CREATE TABLE employees

 (id INTEGER PRIMARY KEY,

 name VARCHAR(30),

 address ROW(street VARCHAR(40),

 city CHAR(20),

 start CHAR(2),

 zip INTEGER),

 projects SET (INTEGER),

 children LIST(person),

 hobbies SET (VARCHAR(20))

);

The BLOB (Binary Large Object) and CLOB (Character Large Object) types have been defined to support very large objects. Instances of these types are stored directly in the database (rather than being maintained in external files). For example:

CREATE TABLE employees

 (id INTEGER,

 name VARCHAR(30),

 salary us_dollar,

...

 resume CLOB(75K),

 signature BLOB(1M),

 picture BLOB(12M));

LOB types are excluded from some operations, such as greater and less than operators, but are supported by other operations, such as value retrieval, and the LIKE predicate.

Matisse

In Matisse, as in many object systems, a class is an implementation of a type. Attributes are typed as in C or C++.

Classes, including the metaclass and its associated objects are "first class objects" in Matisse. They are physically stored as objects on the server and may be modified like any other object. This allows support of on-line schema evolution.

The structure and function of objects is determined by the metaclass. The user may modify the metaclass to support specialized data models and functionality. For example, the metaclass Attribute can be modified to allow read and write to data in an external relational database. This allows any attribute of any object in the system to be specified as residing in an external database. When an object is accessed, such attributes appear as part of the object transparently to the user.

C++

In C++, an object is a region of storage with associated semantics. The declaration int i;, specifies that i is an object of type int. In the context of the object model of C++, the term object refers to an instance of a class. Thus a class defines the behavior of possibly many objects (instances). Objects are usually referred to by references, which are aliases for an object.

A C++ class definition generates a user-defined type. A class defines the characteristics of its instances in terms of members: data members (state) and member functions (methods or operations), and the visibility of these members to other classes. The class defines the form of all objects that belong to that class. Each object of the class that is created gets a copy of all the class data members, except for those declared as static. All objects of a particular class share the member functions for that class. If a class data member is defined with the static keyword, that data member is shared by all objects of that class (there is only one copy of the static data member).

C++ is a statically-typed language (although it supports explicit casts and unions that allow type checking to be suspended). A class essentially defines a type, and a derived class (subclass) is effectively a subtype. If a variable is of a type A, then it may only refer to objects of class A or its derived classes (subclasses). When a subclass is declared, those members which redefine members declared in a superclass must be declared in a way that is consistent with the superclass declaration, in order to maintain substitutability of subclass instances.

An example rectangle class definition [Wes90] is:

class TRect {

public:

 // data members

 short fTop;

 short fLeft;

 short fBottom;

 short fRight;

 // member functions

 short Area(void);

 Boolean PointInRect(Point thePt);

};

A class can be declared within another class; such a class is called a nested class. The name of a nested class is local to its enclosing class. A class can also be declared within a function definition; such a class is called a local class. The name of a local class is local to its enclosing scope.

An abstract class is a class that can be used only as a base class of some other class; no objects of an abstract class can be created except as objects representing a base class of a class derived from it. Abstract classes support the notion of a general concept, such as shape, of which only more concrete variants, such as circle and square, can actually be used. An abstract class can also be used to define an interface for which derived classes provide a variety of implementations [Str92].

A class is abstract if it has at least one pure virtual function. Specifying a function in a base class as virtual means that if a derived class contains a function with the same name and having the same type, a call of that function for an object of the derived class always invokes the function in the derived class, even though the invocation was through a pointer or reference to the base class. In this case, the derived class function is said to override the base class function. A virtual function is specified pure by specifying its implementation as =0 in the function declaration in the class declaration.

C++ class templates provide a parameterized type facility (genericity). A class template specifies how individual classes can be constructed. For example, an example vector class template [Str92] might be:

template<class T> class vector {

	T* v;

	int sz;

public:

	vector (int);

	T& operator[] (int);

	T& elem(int i) { return v[i]; }

	// ...

};

The prefix template<class T> specifies that a template is being declared and that a type name T will be used in the declaration (i.e., that vector is a parameterized type with T as its parameter). A class generated from a class template is called a template class. Examples might be vector<int>, vector<complex>, etc. Such names can be used in the same way as the names of ordinary classes.

OOCOBOL

Any object in OO COBOL belongs to a class. A class describes the structure of the data and the methods that apply to all the objects belonging to that class. A class also has a single class object with data and methods. The class object is an object that acts as a creator of objects. Each class defines two interfaces: an interface defining the methods supported by the class object (the class object interface), and the interface to be supported by each instance of the class. The structure of a class definition is given below.

IDENTIFICATION DIVISION.

 { TRANSIENT [COLLECTABLE] }

CLASS-ID. class-name-1 IS { }

 { PERSISTENT }

 [INHERITS {class-name-2}...].

[Class Environment Division]

[IDENTIFICATION DIVISION.

CLASS-OBJECT.

[Class Object Environment Division]

[Class Object Data Division]

[PROCEDURE DIVISION.

[{Class Methods}...]]

END CLASS-OBJECT.]

[IDENTIFICATION DIVISION.

OBJECT.

[Object Environment Division]

[Object Data Division]

[PROCEDURE DIVISION.

[{Object Methods}...]]

END OBJECT.]

END CLASS.

Interfaces independent of class objects or class instances may be defined by listing the method names and parameter specifications supported by those interfaces. Such an interface may be specified in the declaration of an object identifier to restrict the objects that may be referred to by that identifier to objects whose interfaces conform to the specified interface. Conformance is a relationship between interfaces. One interface is said to conform to a second interface if an object that implements all the methods specified in the first interface may be used anywhere an object that implements all the methods specified in the second interface may be used. A formal definition for conformance is included in the specifications [Obi94].

OO COBOL defines a built-in class called CBL-BASE that user-defined classes can inherit from. This class provides essential functionality for creation and management of objects. [Obi94] describes a minimal implementation of the CBL-BASE class, which is given below. The actual definition of the CBL-BASE class is implementor defined, but should provide the same or greater functionality. Implementors may define data and other methods for the class object interface, the object interface, or both.

 CLASS-ID. CBL-BASE.

 CLASS-OBJECT

 PROCEDURE DIVISION.

 cbl-create-method

 cbl-new-method

 END CLASS-OBJECT.

 OBJECT.

 PROCEDURE DIVISION.

 cbl-class-method

 cbl-discard-method

 cbl-initialize-method

 cbl-iscollectable-method

 cbl-isperistent-method

 END OBJECT.

 END CLASS CBL-BASE.

The following are examples of the definitions of some of these methods. They illustrate some of the basic functionality of OO COBOL classes, and also some of the syntax of method definition in OO COBOL.

The CBL-CREATE method is a class method that allocates storage for an object and initializes its object data to the values specified in VALUE clauses. The method requires system services, and thus only a skeleton can be specified in OO COBOL.

 METHOD-ID. CBL-CREATE IS RESTRICTED.

 DATA DIVISION.

 LINKAGE SECTION.

 01 CREATED-OBJECT USAGE OBJECT REFERENCE SELF.

 PROCEDURE DIVISION RETURNING CREATED-OBJECT.

 ...

 EXIT METHOD.

 END METHOD CBL-CREATE.

The CBL-NEW method is a class method that is used to create objects of a class. It makes use of the CBL-CREATE method, and can be written in OO COBOL.

 METHOD-ID. CBL-NEW.

 DATA DIVISION.

 LINKAGE SECTION.

 01 CREATED-OBJECT USAGE OBJECT REFERENCE SELF.

 PROCEDURE DIVISION RETURNING CREATED-OBJECT.

 INVOKE SELF "CBL-CREATE" RETURNING CREATED-OBJECT

 INVOKE CREATED-OBJECT "CBL-INITIALIZE"

 EXIT METHOD.

 END METHOD CBL-NEW.

The CBL-ISPERSISTENT method returns an indicator as to whether this object is persistent. Only a skeleton can be written in OO COBOL.

 METHOD-ID. CBL-ISPERSISTENT.

 DATA DIVISION.

 LINKAGE SECTION.

 01 RESULT PIC X.

 88 IS-TRUE	VALUE "Y".

 88 IS-FALSE	VALUE "N".

 PROCEDURE DIVISION RETURNING RESULT.

 ...

 EXIT METHOD.

 END METHOD CBL-ISPERSISTENT.

Smalltalk

Smalltalk does not have a separate notion of “type” (message protocol shared by a group of objects) apart from “class.”

A class is a group of objects that represent the same type of entity and share the same methods. A class describes the implementation of a set of similar objects. Classes are themselves objects. All objects belong to some class and an object is an instance of the class of which it belongs.

Eiffel

Every object is a direct instance of exactly one type. It may also be indirectly an instance of more than one type through inheritance.

An Eiffel program (text) describes possible types through their state and operations.

Typing in Eiffel is static. i.e., every component denoting run-time values is typed and the type of the component is determined by its declaration in a class text.

There are three possible kinds of types: reference type, expanded type and formal_generic_type. The first two denote possible run-time components that either reference an object or are and actual object, respectively.

Formal_generic_types represent generic parameters to be provided in actual used of the class by parents or proper descendants. See also entry under 9.5 aggregates.

Every class is a type.

Emerald

Emerald's type system reflects its intended use in the development of software in constantly running distributed systems. In such systems, objects may be developed and implemented separately and differently on different machines at different times. Moreover, to accommodate situations where the types of the objects to be bound to an identifier are not known at compile time, the Emerald type system does not distinguish between objects based on their implementation.

An Emerald abstract type is a collection of operation signatures, where a signature consists of the operation name and the types of the operation's arguments and results. A type contains no information about implementation; it only describes an interface. An example of a simple type declaration is:

 const Printable <-

 type Printable

 function asString -> [String]

 end Printable

Each identifier in an Emerald program, including the names of constants, variables, arguments, and results, has a declared type, which must be evaluable at compile time; this is called the syntactic type of the name. For example, using the above type declaration, one might define a variable var aPrintableObj: Printable. Type checking in Emerald is the process of ensuring that the object to which a name is bound always satisfies the syntactic type of the name. The precise definition of "satisfies" in this context is given by the conformity relation. If an object O is bound to a name I, then the abstract type of O must conform to the syntactic type of I.

The motivation behind Emerald's definition of conformity is the notion of substitutability. Informally, an abstract type S conforms to an abstract type T (written S o> T) if an object of type S can always be substituted for one of type T, that is, the object of type S can always be used where one of type T is expected. For S to be substitutable for T in this way requires that

1. S provides at least the operations of T (S may have more operations)

2. For each operation in T, the corresponding operation in S has the same number of arguments and results.

3. The types of the results of S's operations conform to the types of the results of T's operations.

4. The types of the arguments of T's operations conform to the types of the arguments of S's operations. (Note the reversal in the order of conformity for arguments).

Property 4 is known as contravariance (property 3 is known as covariance). The idea behind contravariance is that an operation on objects of a given type should also work on objects of subtypes of that type.

Each Emerald object may belong to several abstract types because an object O belongs to an abstract type T when typeof O o> T. The application of typeof to an object returns its maximal type, that is, the largest Emerald type that the object can belong to. [RTLB+91]

Emerald's approach to typing allows the use of any object that can handle a given set of messages (satisfies an interface) in a context that sends just those messages (requires that interface), independently of how those messages are implemented within the object. It also allows both the requirements of clients and the capabilities of objects to be expressed abstractly, in terms (respectively) of the required and provided interfaces, without being bound to specific combinations of operations that object implementors have chosen to implement, or that are defined in existing type specifications. Moreover, it permits these advantages to be obtained while retaining the ability to perform strong type-checking.

The conventional approach to defining subtype relationships among types is to explicitly declare them. However, the conformity relation used in Emerald instead creates implicit subtype relationships among defined types, and, in fact, induces a lattice on those types (the top of this lattice is the predefined type Any, which has no operations). Any type that supplies the interface required by type T is implicitly a subtype of T, and may be used as such. Thus, conformity allows the introduction of new supertypes into a type lattice without having to modify the definitions of existing types (or the structure of the type lattice). Emerald provides no means for explicitly declaring the conformity relation (e.g., for explicitly declaring that one abstract type is a subtype of another). Instead, this is determined by comparing the operation signatures defined for the types. This can lead to "mistaken" type matches when two types that are not semantically related happen to have the same operation signatures. Such problems can be reduced by including operations in the types that are specific to the type defined.

Emerald has no notion of class; Emerald provides object constructors for run-time creation of objects. An object constructor is an Emerald expression that, when evaluated, creates a new object. Object constructors perform the following subset of the functions carried out by classes in a language such as Smalltalk:

1. They generate new objects.

2. They describe the representation of objects.

3. They define the code that implements operations. [RTLB+91]

A number of similar objects can be created by placing an object constructor within a loop, or within the body of an operation of another object. This allows for the definition of "factory objects" if that is desired.

The Emerald compiler generates templates that describe the structure of each object. Code and templates are stored in kernel structures called concrete types. One concrete type exists for each object constructor. Concrete types are immutable, and copies of them may exist on many nodes. When an object is moved to another node, the concrete type is not sent along; it is requested by the target node only if needed. Concrete types support the sharing of structure information and operation code among objects constructed using the same object constructor. As a result, to a certain extent concrete types resemble classes from an implementation point of view. However, concrete types are apparently not visible at the Emerald language level, but are instead considered part of the language implementation.

Locating the code for an invoked operation is simplified by the Emerald type system. The abstract type of a variable specifies the operations that can be performed on the object it names. At run time, the variable references an object with a specific concrete type. Even though the object may have more operations than the abstract type, the additional operations cannot be invoked.

The data structure used to locate operations is called an Abstract-Concrete vector. Each variable has associated with it a vector with one entry for each operation defined by its abstract type. The contents of the entry is the address of the corresponding procedure entry point in the concrete type. When an assignment is made, the vector may have to be changed if the new object is implemented by a different concrete type. The compiler generates code to perform this change if it cannot tell the concrete type of the object to be assigned. [BHJL86]

Cecil

Cecil supports a static type system which is layered on top of a dynamically-typed core language. Cecil's type system is descriptive rather than prescriptive. The semantics of a Cecil program are determined completely by the dynamically-typed core of the program. Type declarations serve only as documentation and partial redundancy checks, and they do not influence the execution behavior of programs. It is intended that type annotations could be added to a program as it progresses from development to production use.

A type in Cecil is an abstraction of an object. A type represents a machine-checkable interface and an implied but unchecked behavioral specification, and all objects which conform to the type must support the type's interface and promise to satisfy the behavioral specification. One type may claim to be a subtype of another, in which case all objects which conform to the subtype are guaranteed also to conform to the supertype. The type checker verifies that the interface of the subtype conforms to the interface of the supertype, but the system must accept the programmer's promise that the subtype satisfies the implied behavioral specification of the supertype. Subtyping is explicit in Cecil just so that these implied behavioral specifications can be indicated.

A signature in Cecil is an abstraction of a method, specifying both an interface (a name, a sequence of argument types, and a result type) and an implied but uncheckable behavioral specification. A set of signatures forms the interface of a type. A signature is viewed as associated with each of its argument types, not just the first, much as a multi-method in Cecil is associated with each of its argument specializers.

Cecil separates subtyping from code inheritance. However, since in most cases the subtyping graphs and the inheritance graphs are parallel, in Cecil both graphs are specified simultaneously with a single set of object and method declarations. An object declaration constructs both a new object in the inheritance graph and a new type in the type lattice (similarly, a method implies the existence of a corresponding signature). See entry under 2.6 object lifetime. The new object in the inheritance (implementation) graph is a direct child of the objects named in the inherits and isa clauses, if any. The new node in the type lattice is a direct subtype of each of the types named in the subtypes and isa clauses, if any. Finally, the new object is declared to conform to the new type. Object constructor expressions similarly generate both objects and types, but these objects and types are anonymous (have no names).

Each of the names included in an isa clause is interpreted both as an object (when constructing the inheritance graph) and as a type (when constructing the type lattice), and so provides a shorthand for declaring both inherits and subtypes clauses with the same name. This is designed to make it easy to specify the inheritance and subtyping properties of an object/type pair for the common case where code inheritance and subtyping are parallel. It is expected that in most programs only isa declarations will be used; inherits and subtypes declarations are intended for the cases where distinctions between inheritance and subtyping must be specified.

Some objects are not intended to correspond to first-class types used, e.g., in variable declarations. To support this distinction, an object declaration that is intended to generate a first-class namable type uses the keyword type rather than object in the object declaration. Both object and type declarations create both an object and a type, but the type created as part of an object declaration is an internal type that cannot normally be named by the program.

At present, Cecil does not provide programmers the ability to define types or signatures separately from objects and methods. If only a type or signature is needed, then an abstract type object declaration or an abstract method can be used.

Subtyping and conformance in Cecil is explicit, in that the programmer must explicitly declare that an object conforms to a type and that a type is a subtype of another type. These explicit declarations are verified as part of type checking to ensure that they preserve the required properties of conformance and subtyping. Explicit declarations are used in Cecil instead of implicit inference of the subtyping relations (structural subtyping, or conformity as in Emerald) both to provide programmers with error-checking of their assumptions about what objects conform to what types and what types are subtypes of what other types, and to allow programmers to encode additional semantic information in the use of a particular type name in addition to the information implied by the type's method signatures.

�SELF

Like Smalltalk, SELF has no type declarations. Checking that a message sent to a given object can be handled by that object (or by objects it delegates to) is performed at run-time.

SELF also has no classes. Since SELF uses prototypes rather than classes, each object conceptually defines its own format, behavior, and inheritance (rather than having a separate class object to define this). A naive implementation of this approach would require that each object explicitly implement both its own class-like format, method, and inheritance information, and its own instance-like state information. However, SELF uses an implementation technique that allows it to regain much of the storage efficiency of shared class information. This is possible because few SELF objects have totally unique format and behavior. Instead, almost all objects are created by cloning some other object and then modifying the values of the assignable slots. Major changes in the format or inheritance of an object can only be accomplished by invoking special primitives. A prototype and the objects cloned from it, identical except for the values of their assignable slots, are called a clone family. In the SELF implementation, objects are represented by the values of their assignable slots, if any, and a pointer (not visible to the user) to a structure called the object's map; this map is shared by all members of the same clone family. Maps are immutable so that they may be shared by objects in the same clone family. However, when the user changes the format of an object or the value of one of an object's constant slots, the map no longer applies to the object. In this case, a new map is created for the changed object, starting a new clone family. The old map still applies to any other members of the original clone family.

From the implementation point of view, maps look much like classes, and achieve the same sorts of space savings for shared data. However, maps are not visible at the SELF language level, but are instead considered part of the language implementation [CUL89]. This allows the user to see a model in which each object defines its own format, methods, etc., while at the same time permits the elimination of redundancy where this is possible. Users may also create user-visible objects which serve as shared behavior repositories (and to which other objects can delegate to obtain shared behavior). These objects are called traits objects. The creation of traits objects is independent from the existence of maps; the user need not create traits objects, while the implementation automatically generates maps.

System Object Model (SOM)

The SOM description for "types and classes" is essentially the same as that described in the OODBTG Reference Model entry in this section in that a "type" defines a protocol shared by a group of objects, called "instances" of the type and a class defines an implementation shard by a group of objects.

In SOM, all objects are derived from a SOM root object which defines the essential behavior common to all SOM objects. In addition, SOM has a root class for all SOM metaclasses which defines the essential behavior common to all SOM classes. The SOM metaclasses define factory methods that manufacture objects of any class for which they are the metaclass.

OLE Component Object Model

Unlike C++, where objects are defined using class definitions which generate user-defined types, Windows Objects are defined in terms of the interfaces they support. Since all objects support at least one interface (IUnknown), all Windows Objects are at least of type IUnknown, and can be treated as being of another type by using a different interface. Because of this mechanism, there is no single user-defined type associated with a Windows Object class, as there is with a C++ class (examples of standard Windows Objects include such things as windows, dialogs, messages, controls, and GDI objects, such as pens, brushes, fonts, and bitmaps).

A Windows Object class is identified as such only through a class ID (a structure called CLSID) that associates an object with a particular DLL or EXE in the file system (e.g., the application that implements the object). The class ID is stored in a registration database, along with information that defines where the object "lives" and characteristics that a potential user may wish to know without having to actually instantiate the object. The registration database is stored in REG.DAT in the Windows directory. Under Windows Objects, a class object represents a specific class ID, is obtained by a specific OLE API, and supports an interface called IClassFactory. Every component object class (but not all types of Windows Objects) must have a unique CLSID associated with it in the registration database (i.e., Windows Objects can exist that do not have defined classes in this sense).

See also entry under 2. Objects.

Analysis and Design Methods

SA:	Type: “Now we take all the attributes that are common to all of the separate objects [classes or, strictly, typical unspecified instances]--the subtype objects--and use these attributes as the basis for generalizing a new object, which we call the supertype object.” “Attributes that are common to all the subtype objects are places in the supertype object. The subtype objects will also have additional attributes to support the more specialized abstractions represented by each subtype.” “In a subtype-supertype construct, one real-world instance is represented by the combination of an instance of the supertype and an instance of exactly one subtype.”

SD:	Class: the external view of a class is represented in design by a diagram showing the name of the class, the name and type of each logical data component, the name of each published operations (instance- and class-based) along with the name, type, and cardinality of each of the input and output parameters of the operation; conditional parameters and deferred operations are identified.

“... each class is designed around a data type appropriate for storing information about an instance of that class.”

Type: footnote: “* A supertype object is therefor analogous to a parent abstract class in Smalltalk and the parent deferred class in Eiffel. Subtype objects are analogous to child classes in virtually all object-oriented programming languages.”

CA:	“Class. A description of one or more Objects [instances], describable with a uniform set of Attributes and Services; in addition, it may describe how to create new Objects in the Class.” Type does not appear to be a part of the object model.

RA:	“An object class describes a group of objects [instances] with similar properties (attributes), common behavior (operations), common relationships to other objects, and common semantics.”

JA:	“A class is sometimes called the object’s type. However, a type and a class are actually not the same thing. As we mentioned above, an abstract data type is defined by a set of operations. A type is defined by what manipulations you can do with the type. A class is more than that. You can also look inside the class, for example to see its information structure. We would therefore rather view the class as one (of possibly many) specific implementation[s] of a type.

WD:	‘Type’ is discussed only in the context of type checking by compilers and run time systems.

MD:	“...[A] class is an abstract data type implementation, not the abstract data type itself.” “A language construct combining the module and type aspects is called a class.”

“...[T]rue object -oriented programming all but identifies the motion of module with the notion of type. ... The fusion of two apparently distinct notions is what gives object-based design its distinctive flavor.”

EA:	The term ‘type’ is not used. “[A] set of objects that belong together for some logical reason is called an object class.” “The idea of an object class is similar in concept to the technique of biological classification, where biologists group living things together that share common traits.” [Note that in biological classification a ‘type’ is an individual which exemplifies the classification. --ed.]

FA:	“Objects are grouped into sets called classes. A class is an abstraction, which represents the idea or general notion of a set of similar objects. Associated with each class there is a predicate that defines the criteria for class membership.” “class: A set of objects that share a common structure and a common behavior. “ “An object is an instance of a class if its type is that class or a subtype of it.” “Generalization allows a class, called the supertype, to be formed by factoring out the common properties of several classes, called subtypes.”

OA:	“A concept ... is just a word or symbol we can use in place of repeating its definition. ... The prevalent term for concept in the object-oriented analysis standards is object type. (Some use the term class. Most standards organizations, however, consider classes as implementations of object types.) Therefore ... the name object type will be used instead of concept.”

BD:	“A class is a set of objects that share a common structure and a common behavior.”

BD:	“... [A] type [is t]he definition of the domain of allowable values that an object may posses and the set of operations that may be performed on the object. The terms class and type are usually (but not always) interchangeable; a type is a slightly different concept than a class, in that it emphasizes the importance of conformance to a common protocol.”

HA:	“A class is an implementation of an Abstract Data Type (ADT)”. “... the ADT is the specification and the class the implementation of the ADT.” It is “possible to construct more than one version of a class that implements the same ADT.”

NA:	“[A] class is viewed as the implementation of an abstract data type...” “Abstract data type[:] A type of data structure ... defined exclusively through its external behavior. An [abstract data type] is defined by a number of applicable operations, how each operation may be invoked (the signature), and its effect (the semantics).” “A type is roughly equivalent to a class in this book, except that parameterized classes give rise to different types, depending on the type of the furnished parameters.”

��8.	Inheritance and Delegation

OODBTG Reference Model

"Inheritance" and "delegation" both involve deriving new definitions from existing ones.

In "class-class inheritance", classes are arranged as nodes in a graph, with unidirectional links between nodes defining inheritance paths. "Subclasses" ("derived classes") are "specializations" of their more general parent classes. "Superclasses" ("base classes") represent "generalization" of their child classes.

Conflicting definitions of protocol, behavior, and state may be inherited along paths of the inheritance graph and are resolved in system-dependent ways. Different "conflict resolution" and "method combination" strategies are used in different systems to define the semantics of inheritance. When creating a subclass, attributes and operations may be added to those inherited from the superclasses, or they may selectively "override" (replace), or "block" (hide) those from the superclass.

The two most common forms of class-class inheritance are "single inheritance", where the graph is a tree, and "multiple inheritance", where the graph is a directed acyclic graph.

In "class-instance inheritance", instances of a class inherit a common interface and an initial state (default or initial values of certain attributes) from the class.

In "delegation", which can be characterized as "instance-instance inheritance", an object assigns or transfers behavioral definitions or implementations or state to another object. Some delegation-based systems do not differentiate between class and instances. Object-to-object delegation generalizes both class-class inheritance and class-instance inheritance.

OMG Core Object Model

4.2.6 Subtyping and inheritance

Subtyping is a relationship between types based on their interfaces. It defines the rules by which objects of one type are determined to be acceptable in contexts expecting another type. Inheritance is a mechanism for reuse. It allows a type to be defined in terms of another type. Many object systems do not distinguish between subtyping and inheritance. This section defines the two concepts separately, but then explicitly states how they are related in the Core Object Model.

4.2.6.1 Subtyping

The Core Object Model supports subtyping for Object types. Intuitively one type is a subtype of another if the first is a specialization or a refinement of the second. Operationally, this means that any object of the first type can be used in any context which expects an object of the second type; that is, if S is a subtype of T, an object of type S may be used wherever an object of type T may be used. In other words, objects of type S are also of type T. Subtypes can have multiple parent types, with the implication that an object that is an instance of a type S is also an instance of all supertypes of type S. The relationships between types define a type hierarchy, which can be drawn as a directed acyclic graph.

An object is a direct instance of a type if it is an instance of that type and not an instance of any subtype of that type. The Core Object model restricts objects to be direct instances of exactly one type. That one type is the object's immediate type. The Core Object model has no mechanism for an object to change its immediate type.

In the Core Model, the type designer is required to declare the intent that a type S is a subtype of T. Formally, if S is declared to be a subtype of T (and conversely, T is a supertype of S), then for each operation WTi Œ Ops(T) there exists a corresponding operation WSj Œ Ops(S) such that the following conditions hold:

1. the name of the operations match

2. the number and types of the parameters are the same (except that the controlling parameter types may differ)

3. the number and types of the results are the same.

Thus, for every operation in T there must be a corresponding operation in S, though there may be more operations in Ops(S) than Ops(T). The specifications of corresponding operations must match precisely (with the exception of the controlling argument).

The Core Object Model presents very strict typing rules that ensure that substitutability9 can be guaranteed using the information in the specifications. These rules can be relaxed somewhat and still guarantee substitutability. One of the components defined in the OMG OM Components Guide describes a modified set of rules that loosen the above conditions to allow argument and result types to differ but still preserve substitutability.

Editor's note: the OMG OM Components Guide exists in draft form only.

A single type can have multiple supertypes in the Core Object Model. The above typing rules, however, prevent two types that have an operation with the same name but different signatures from having a common subtype.

Supertypes are used to characterize functionality that is common to their subtypes. Often a supertype's interface is incomplete as a standalone type. It relies on its subtypes to extend the interface. Other times, a supertype specifies a complete definition of some type, but the type is useful only when it is combined with other types in a new subtype. In both cases the supertype does not have any direct instances of its own. Only subtypes of this supertype can have direct instances. The Core Object model refers to these types as Abstract types.

4.2.6.2 Inheritance

Inheritance is a notational mechanism for defining a type S in terms of another type T. The definition of S inherits all the operations of T and may provide other operations. Intuitively, inherit means that the operations defined for T are also defined for or can be used by S10.

Subtyping is a relationship between interfaces (types). Inheritance can apply to both interfaces and implementations; that is both interfaces and implementations can be inherited. The Core Object model is concerned with inheritance of interfaces. It does not specify what can happen with implementations of inherited operations (for example, whether they may be changed or overridden by a subtype).

The Core Object Model relates subtyping and inheritance. If S is declared to be a subtype of T, then S also inherits from T. The Core Object model supports multiple inheritance, which allows a subtype to have multiple supertypes. The Core does not provide a name conflict resolution mechanism nor does it allow subtypes to redefine inherited operation signatures. These two constraints are relaxed in a component defined in the OMG OM Components Guide.

Editor's note: the OMG OM Components Guide exists in draft form only.

Consider the following type definitions

type Person

 abstract

 supertypes: Object

 operations:

 String social_security (P: Person)

 String name (P: Person)

end type

type Employee

 supertypes: Person

 operations:

 Department dept (E: Employee)

 Money salary (E: Employee)

end type

In this example, type Employee is declared to be a subtype of type Person. In the Core Object Model this implies that

1. all instances of type Employee are also instances of type Person, and so an Employee object can be used wherever a Person object is expected.

2. Employee inherits the name and social_security operations from Person.

Furthermore, Person is declared to be an abstract type and so it cannot have any direct instances.

9 Substitutability means being able to substitute an object of some type S when an object of type T is expected, where T is a supertype of S, while guaranteeing that that the substituted object will support the same operations as specified by the supertype T.

10 Whether Ops(S) is a superset of Ops(T) or the two are disjoint sets is an implementation issue and does not affect the Core semantics.

�OMG CORBA IDL

CORBA supports interface inheritance, meaning that one interface can be derived in terms of another. A derived interface may redefine any of the type, constant, and exception names which have been inherited. Multiple inheritance is supported in that an interface may be derived from a number of base interfaces.

CORBA does not address object implementation inheritance.

ODMG

The model defines type inheritance only (i.e., subtyping). If S is a subtype of T, then S inherits all operations and properties of T, and S may define new operations and properties applicable to its instances. In other words, objects of type S have all the characteristics (and more) of type T. A subtype can specialize the properties and operations it inherits, but there are no rules given to indicate what kinds of refinement are correct.

A type can inherit from multiple supertypes, but must rename same-named inherited operations or properties.

Section 2.2.1 notes that new subtypes may only be defined under type Object. At this point (release 1.1) no subtyping is allowed for characteristic types - attributes, type, relationships, operations. Type compatibility for objects is by name. Two objects have the same type if and only if they are instances of the same named type. An object of a given type can be assigned to an object of any of its supertypes.

For literals, type compatibility is by structure - structured literals (immutable collections or structures) have the same type only if they have the same structure at each level and corresponding atomic parts have the same type. "Subtyping" of structured literals requires that both have the same structure at every level, and that the type of each 'subobject' of the supertype is the same or a subtype of the corresponding subobject of the subtype (section 2.8.2.2 - contravariance).

EXPRESS

EXPRESS supports single as well as multiple inheritance (an entity type may have more than one supertype). Attributes and constraints are inherited from supertype to subtype entities. An instance of a subtype is valid in any context in which an instance of (any of) its supertype(s) is valid.

When a name conflict arises as a result of multiple inheritance, any use of the name in question must be prefixed with the name of the originally defining entity type in order to provide an unambiguous reference.

In the case of repeat inheritance, where multiple inheritance causes a subtype to inherit from some supertype by more than one path, the subtype inherits only one set of the attribute definitions from the supertype in question. If these attributes have been constrained differently along the different inheritance paths, the subtype inherits all of the constraints applied along all of the paths.

Open Distributed Processing

Supports multiple inheritance of which single inheritance is a constraint.

The inheritance mechanisms are implementation dependent.

Two major forms of inheritance are possible:

a. Incremental inheritance - related to the class hierarchy, occurs when a new class template is explicitly represented in terms of an existing template.

b. Subtyping - related to the type hierarchy, occurs when a new class template, together with the instantiation rules, produces a stronger predicate than the old template with the (same) instantiation rules.

Management Information Model

The subclass inherits the operations, attributes, notifications, packages and behavior of the superclass. This specification allows only for strict inheritance of characteristics... Specialization by deleting any of the superclass characteristics is not allowed. Multiple inheritance is the ability of a subclass to be specialized from more than one superclass. The subclass inherits the operations, attributes, notifications, packages and behavior from more than one superclass. When a class has multiply inherited the same characteristic from multiple superclasses, then that class is defined as though that characteristic were inherited from only a single superclass. Specialization shall not introduce contradictions in the subclass's definitions. [Part 1]

SQL3

An ADT can be defined as a subtype of one or more ADTs by defining it as UNDER those ADTs (multiple inheritance is supported). In this case, the ADT is referred to as a direct subtype of the ADTs specified in the UNDER clause, and these ADTs are direct supertypes. A type can have more than one subtype and more than one supertype. A subtype inherits all the attributes and behavior of its supertypes; additional attributes and behavior can also be defined. An instance of a subtype is considered an instance of all of its supertypes. An instance of a subtype can be used wherever an instance of any of its supertypes is expected.

Every instance is associated with a "most specific type" that corresponds to the lowest subtype assigned to the instance. At any given time, an instance must have exactly one most specific type (in some cases, multiple inheritance must be used to ensure this is true). The most specific type of an instance need not be a leaf type in the type hierarchy. For example, a type hierarchy might consist of a maximal supertype person, with student and employee as subtypes. student might have two direct subtypes undergrad and grad. An instance may be created with a most specific type of student, even though it is not a leaf type in the hierarchy. A TYPE predicate allows for the type of an ADT instance to be tested at run time.

A subtype definition has access to the representation of all of its direct supertypes (but only within the ADT definition that defines the subtype of that supertype), but it has no access to the representation of its sibling types. Effectively, components of all direct supertype representations are copied to the subtype's representation with the same name and data type. To avoid name clashes, a subtype can rename selected components of the representation inherited from its direct supertypes.

A subtype can define operations like any other ADT. A subtype can also define operations which have the same name as operations defined for other types, including its supertypes (overriding).

A table can be declared as a subtable of one or more supertables (it is then a direct subtable of these supertables), using an UNDER clause associated with the table definition. An example is:

CREATE TABLE person

 (name CHAR(20),

 sex CHAR(1),

 age INTEGER;

CREATE TABLE employee UNDER person

 (salary FLOAT);

CREATE TABLE customer UNDER person

 (account INTEGER);

The subtable facility is completely independent from the ADT subtype facility. When a subtable is defined, the subtable inherits every column from its supertables, and may also define columns of its own. A maximal supertable (a supertable that is not a subtable of any other table) together with all its subtables (direct and indirect) makes up a subtable family. A subtable family must always have exactly one maximal supertable. Any row of a subtable must correspond to exactly one row of each direct supertable. Any row of a supertable corresponds to at most one row of a direct subtable.

The rules for the SQL INSERT, DELETE, and UPDATE DML statements are defined in such a way as to keep the rows in the tables of a subtable family consistent with each other, in accordance with the rules described above. Specifically:

•	If a row is inserted into a subtable T, then a corresponding row (with the same row identifier, and the same values as any values provided for inherited columns of T) is inserted into each supertable of T, cascading upward in the table hierarchy. If T is a maximal supertable, a row is inserted only into T.

•	If a row is updated in a supertable, then all inherited columns in all corresponding rows of the direct and indirect subtables are correspondingly changed.

•	If a row is updated in a subtable, then every corresponding row is changed so that their column values match the newly updated values.

•	If a row in a table that belongs to a subtable family is deleted, then every corresponding row is also deleted.

The semantics maintained are those of "containment"; a row in a subtable is effectively "contained" in its supertables. This means that, for example, a row could exist for a person in the person table without a corresponding row in the employee table (if the person is not also an employee). A row for a new employee, not corresponding to any existing person, could be inserted into the employee table, and this would automatically create a corresponding row in the person table.

�Matisse

Matisse supports standard "specialization" inheritance as implemented in C++ or Smalltalk and described in the Matisse entry under 3. Binding.

Delegation can be implemented in Matisse by providing a method, trigger, or constraint, that invokes any other method(s) or function(s). In addition, there are "universal methods" that are independent of the inheritance hierarchy. These can be invoked by any method or function attached to the database or from the application through the Matisse API.

C++

C++ supports multiple inheritance. Inheriting classes are called derived classes, and the classes they inherit from are called base classes. The derived classes inherit all the data members and member functions from the base class. The derived class may extend the base class by adding new data members or member functions. The derived class may also override member functions from the base class by supplying a new definition for the function.

There are two forms of derivation, public and private. When the declaration of a derived class contains the keyword public preceding the base class name, objects of the derived class can be treated as if they were instances of the base class. In particular, an object of the derived class can be used to invoke member functions or access data members defined for the base class. If the public keyword is omitted, then the class is privately derived by default, and objects of the derived class cannot be used as if they were objects of the base class. For privately derived classes, only those data members and member functions that are defined (or overridden) in the derived class can be accessed. Member functions of a privately derived class can access the base class's data members and member functions, but users of objects of the derived class cannot used the derived objects to access data members and member functions of the base class. In other words, public inheritance is used to define subtypes (which can also share behavior), while private inheritance allows sharing of behavior, but does not permit an instance of the derived class to be used in situations where a base class instance would be expected.

For example, given a rectangle class [Wes90]:

class TRect {

public:

 // data members

 short fTop;

 short fLeft;

 short fBottom;

 short fRight;

 // member functions

 virtual short Area(void);

 Boolean PointInRect(Point thePt);

};

a round cornered rectangle might be defined as:

class TRoundRect : public TRect {

protected:

 // added data members

 short fHOval;

 short fVOval;

 // override the area member function

 virtual short Area(void);

};

A class may be derived from any number of base classes. The order of derivation is not significant except possibly for default initialization by constructor, for cleanup, and for storage layout. The order in which storage is allocated for base classes is implementation dependent. Access to base class members must be unambiguous. Ambiguities can be resolved by qualifying a name with its class name [Str92].

OOCOBOL

The INHERITS clause of a class definition specifies the names of classes that are inherited by the class being defined. A predefined CBL-BASE class is defined that COBOL classes can inherit from. Although it is not required that classes inherit from CBL-BASE, this is the only way to write (in standard COBOL) a creatable class. Class inheritance in OO COBOL is an implementation concept. Interfaces can be defined that inherit the interfaces of classes and/or other interfaces. Multiple inheritance is supported for both class and interface inheritance. Rules are defined to insure that implementation inheritance implies interface conformance, even in cases of multiple inheritance. The collection of class and interface definitions effectively form a single subtype hierarchy defined by the conformance relationships between the object, class object, and interface definitions.

See also entry under 7. Types and Classes.

Smalltalk

Smalltalk class relationships are defined in terms of inheritance. The properties of one class are be inherited from another class in a hierarchical structure beginning with the upper-most class (Object). In inheritance, the inheriting class is called the subclass and the class being inherited from is call the superclass. A subclass inherits all of its superclass’ variables and methods.

Abstract classes are classes from which other classes are inherited (subclassed) only. Instances can be implemented any non-abstract class.

Subclasses are specialization of their superclasses. A subclass may add variables, but it cannot delete those inherited from the superclass. A subclass may accept an inherited method or it may override the method by providing an new method with the same name (or message selector).

Object instances are instances of a class. Smalltalk does not provide for delegation (defined as object instances being created from other object instances and not a class).

Eiffel

Eiffel uses a multiple inheritance model. Subclasses may inherit from one or more superclasses. A class may also inherit from one class many times. This is repeated inheritance.

Inheritance in Eiffel is used both as a module extension mechanism and a type refinement mechanism.

The problems of name clashes and conflicts caused by multiple inheritance can be alleviated using a number of `feature_adaptation' clauses. The properties of inherited features can be modified in the following ways:

renaming -- to remove any name clashes, and also to provide context specific �	names to features.

exporting -- changing the export status of features. By default the export status of �	inherited features is the same as in the parent. The export status can be �	changed.

undefining -- Changing an operation with an implementation to an operation �	without an implementation. From `effected' to deferred'.

redefining -- Modifying the signature and implementation of an operation. The �	signature, preconditions and postconditions must conform to the original �	definition.

selecting -- Removing conflicts for dynamic binding under repeated inheritance

sharing -- merging two (or more) features from a repeatedly inherited class into �	one feature.

joining -- merging two deferred features (with compatible signatures) into one.

Emerald

Emerald supports type conformity (and hence object substitution), but it does not support (implementation) inheritance. Code cannot be explicitly shared among object implementations (see the entry under 7. Types and Classes). The absence of code sharing is due to Emerald's use in distributed systems; the mobility of an object is enhanced when it is self-contained, and hampered if it is dependent on other objects. Emerald allows different implementations to be used for the same abstract type within a single program. [RTLB+91]

Cecil

Cecil uses a classless (prototype-based) object model, hence objects can inherit directly from other objects to share code. Inheritance may be multiple, by listing more than one parent object. Like most object-oriented languages, in Cecil the inheritance graph is static. An object cannot change its ancestry after it has been created. These restrictions preclude some flexibility traditionally associated with prototype-based languages, such as dynamic inheritance in SELF, but simplify type checking. The inheritance structure of an object may be augmented after the object is created through an object extension declaration (see entry under 10.1 Dynamic). Inheritance in Cecil requires a child to accept all of the fields and methods defined in the parents. These may be overridden in the child, but facilities such as excluding fields or methods from the parents or renaming them as part of the inheritance are not available in Cecil.

In Cecil, inheritance of code is distinct from subtyping (inheritance of interface or specification). Use of the type keyword in an object definition declares that the object also specifies a type (a set of method signatures), and subtypes declarations separate from the inherits declarations describe an object's relationship to types in the subtype lattice. This distinction enables an object to be a subtype of another without being forced to inherit any code, and enables an object to inherit code without being restricted to be a legal subtype of the parent object (see entry under 7. Types and Classes). [Cha92]

SELF

SELF supports implicit delegation [CMC92]. This means that when an object cannot answer a message, the interpreter automatically delegates it to another object (as opposed to explicit delegation, in which delegation is specified explicitly for each message to be delegated). In SELF, the object to which an object delegates a message is called the object's parent. Objects have parent slots to inform the interpreter to which objects messages should be delegated.

System Object Model (SOM)

A class defines both an interface and an implementation for objects. The interface defines the signature of the methods supported by objects of the class, and the implementation defines what instance variables implement the object's state and what procedures implement its methods.

New classes are derived by sub-classing from previously existing classes through inheritance and specialization. Subclasses inherit their interfaces and implementations from their parent classes unless they are overridden.

SOM supports multiple inheritance. That is, a class may be derived from multiple parent classes.

OLE Component Object Model

Windows Objects and the classes they identify through class identifiers have no notion of implementation inheritance. One Windows Object does not inherit the implementation of another Windows Object. Instead, reuse of objects is supported through the containment and aggregation mechanisms. In the Component Object Model, inheritance is simply considered as a language-specific tool (e.g., in C++) that may be useful for implementing classes and defining interfaces in that language. The reason given for not supporting inheritance is that systems built on it must ship all their source code in order to be useful [Bro94a]. For example, inheritance cannot be used to inherit from objects used in the operating system itself, for which source code is not available.

In the Component Object Model, both the containment and aggregation mechanisms work by using the implementation of another object. However, the object being used remains entirely self-contained and operates on its own instance of data. The containing object also works on its own data, and calls the other object as necessary to perform specific functions for which it can be passed the data on which to operate.

To implement what corresponds to a subclass Y of a class X using containment, class Y completely contains an X object and implements its own version of the X interface which it exports to clients. This makes Y a simple user of X, and X need not know about its use within Y. This is useful when Y needs to override some aspect of X's behavior. Since all external calls go to the Y implementation first, Y can either override selected behavior or pass the calls directly through to X.

To implement what corresponds to a subclass Y of a class X using aggregation, class Y directly exposes X's interface. This requires that X "know" that its interface is exposed for something other than itself, such that the QueryInterface, AddRef, and Release functions behave as a user expects (e.g., X's QueryInterface function must be capable of returning references to interfaces implemented by Y which, as a part of an X interface, it did not originally know about; OLE provides a mechanism for dealing with this when an aggregate is created).

Windows Objects do support a specific case of interface inheritance, in that all other interfaces derive from IUnknown, as described in the entry under 2. Objects. Generally, however, unlike models supporting a "conventional" subtyping mechanism for objects having a single interface, the interfaces in Windows Objects remain distinct. Through a pointer to a Y interface, the object cannot be treated as an X, even if the object also has an X interface; instead, the user must explicitly get a pointer to the X interface.

C++ multiple inheritance is a convenient way to provide multiple function tables for each interface, since the compiler generates them automatically. Because each implementation of a C++ member function is already part of the object class, each automatically has access to everything in the object. [Bro94a] also discusses a more general approach to constructing objects, for use by programmers in C and other languages that do not provide built-in inheritance. In this approach, a C++ object class corresponding to the Windows Object class inherits from IUnknown, and implements these functions to control the object as a whole. Each interface supported by the object is then implemented in a separate C++ class that singly inherits from the interface it is implementing. These "interface implementations" are instantiated with the object, and live as long as the object lives. The IUnknown members of these interface implementations always delegate to some other IUnknown implementation, which in most cases is the overall object's IUnknown. Each interface implementation also holds a "back pointer" to the object in which the implementations are contained so that they are able to access information centrally stored in the object. In C++, this generally requires that each interface implementation class be a friend of the object class.

Analysis and Design Methods

SA:	Multiple inheritance is used in data modeling. No explicit concept of delegation.

CA:	Inheritance may be single or multiple. The terms used are ‘hierarchy generalization-specification structure’ and ‘lattice generalization-specification structure.’ No explicit concept of delegation.

RA:	“Inheritance is a mechanism for implementing generalization, in which the behavior of a superclass is shared by all its subclasses. Sharing of behavior is justifiable only when a true generalization relationship occurs, that is, only when it can be said that the subclass is a form of the superclass.”

“Delegation consists of catching an operation on one object and sending it to another object that is part of o r related to the first object.”

JA:	Inheritance: “The descendent has all of the properties of the ancestor. ...the descendant knows of its ancestor, but the ancestor does not know of its descendants.

Extends: “One object extends another object” by providing additional functionality. This concept corresponds to ‘delegation.’

Jacobson et al. refer to delegation as reuse of code through composition, rather than inheritance.

WD:	“Collaborations represent requests from a client to a server in fulfillment of a client responsibility. A collaboration is the embodiment of the contract between a client and a server. An object can fulfill a particular responsibility itself, or it may require the assistance of other objects. We say that an object collaborates with another if, to fulfill a responsibility, it needs to send the other objet any messages.”

“... [S]ubsystems delegate each contract to a class within them that actually supports the contract.”

MD:	“(Inheritance): A class may be defined as an extension or restriction of another.

“...[I]f types are identified with modules, then it is tempting to identify the reusability mechanisms provided by both concepts: On the one hand, the possibility for a module to directly rely on entities defined in another. On the other hand, the concept of subtype, whereby a new type may be defined by adding new properties to an existing type. In object-based languages, this is know as the inheritance mechanism, with which a class may be defined as an extension or restriction of a previously defined one.”

EA:	‘... [T]he essential idea for is a relationships sets is that one object class is a subset/superset of another.” “A superset object class is called a generalization, and a subset object class is called a specialization.” “Since the members of a specialization are also members of a generalization, they all participate in the relationship sets of a generalization. The converse, however, does not hold because some members of a generalization may not be members of a specialization, and may, therefore, not participate in the relationship sets of the specialization. This observation leads to the notion of inheritance.” “A specialization inherits the relationship sets of its generalization.” There are no attributes in the model.

“... [W]e have multiple inheritance when a class is a specialization of two or more generalizations.”

FA:	“In a generalization, the attributes and relationships of the supertype are ‘inherited’ by the subtypes. Each subtype may have additional attributes and participate in additional relationships. Specialization is the converse case in which a new subtype is defined as a more specialized version of a supertype.”

“During analysis, abstract subtype relationships between classes are identified. Specialization defines a semantic relationship between tow classes: the general and specific ones. This semantic relationship is inherent in the domain of the system. Specialization and generalization are properties of the domain model and not of the system design or implementation.”

“Multiple specialization allows a new subtype to be defined as a specialization of more than one immediate supertype. ... The subclass inherits the attributes and relationships of all its superclasses.”

FD:	“At design ... the inheritance relationship is a property of the system and not necessarily of the domain.”

“... [C]ollaborators collaborate and cooperate with the controller to implement the system operation.”

OA:	“...[T]he word inheritance has not been used in conjunction with generalization. In OO analysis, this term is not appropriate ... to refer to the application of a type’s properties to its subtypes. It is appropriate, however, for OO design. In OO programming, inheritance is the mechanism that facilitates the reuse of program code from a class to its subclasses.”

BD:	“... [I] defines a relationship among classes, wherein one class shares the structure or behavior defined in one or more classes (denoting single inheritance and multiple inheritance, respectively).

“An alternative approach to inheritance involves a language mechanism called delegation, in which objects are viewed as prototypes (also called exemplars) that delegate their behavior to related objects, thus eliminating the need for classes.”

HA:	Delegation: “Contracting with an O/C to provide a service places a responsibility on that O/C... However, it is of no interest to the client whether the supplier fulfills its contract itself or by subcontracting to one or more other classes.

Generalization/specialization (or specialization inheritance) represents the is-a-kind-of relationship. Specification inheritance permits polymorphic substitutability but not necessary specialization inheritance. Implementation inheritance “focuses on code inheritance, rather than on behavior and substitutability”. Multiple generalization and multiple inheritance are both allowed.

NA:	“A class may inherit from one class (single inheritance), from several classes (multiple inheritance), or several times from the same class (repeated inheritance). Inheritance is simply defined as the inclusion in a class ... of operations and contract elements defined in other classes ...” “Delegation[:] Refers to shared behavior in object-oriented systems using prototypes instead of classes ...” as in the language, Self. [See Self entry--ed.]

�9.	Noteworthy Objects

OODBTG Reference Model

Different object models may distinguish or provide special support for the noteworthy objects identified in the following subsections. The list is not exhaustive nor are the objects with the characteristics identified here necessarily mutually exclusive. Some may not be treated as objects in all object models.

OMG Core Object Model

4.2.1 Basic Concepts

 ...

State is required in an object system because it captures the information needed to affect operations. For example, the operation marry takes two person objects as input arguments and produces side effects on these two objects. State captures these side effects, and, presumably, a subsequent application of the spouse function to either object will now yield a different result from what it did before. In the Core Object Model, operations are used to model the external interface to state. Attributes and relationships, which can be used to model the externally visible declarations of state more succinctly, are currently defined in the OMG OM Components Guide.

Editor's note: the OMG OM Components Guide exists in draft form only.

OMG CORBA IDL

CORBA does not define specific objects, however. CORBA does define pseudo objects. Pseudo objects have interfaces just like ordinary CORBA objects but may be implemented in the ORB instead of as a real CORBA objects. Pseudo objects defined as part of the CORBA specification include the ORB itself. The other pseudo objects are not listed here because they have no direct bearing on the analysis of this model.

�Eiffel

All classes inherit from class ANY. This class inherits in turn from classes: PLATFORM (which introduces platform specific features) and GENERAL (which introduces general state and operations that are applicable to all classes, such as copy, clone and equal).

There is also a conceptual class called NONE that inherits from all classes. This class does not have any instances and exports no state or operations. It is used to represent a reference that does not point to an object (Void). Class GENERAL has an entity called Void of type NONE and serves as the initialization value of all references.

System Object Model (SOM)

SOM has three important objects which exist as part of the run time environment. The first is a root object from which all SOM objects are derived. This root object defines the essential behavior common to all SOM objects.

The second object is the root class object which defines the essential behavior common to all SOM classes. All SOM classes are expected to have this class object or some class derived from it as their metaclass. This object carries the methods which serve as factory objects.

The third object is a class manager. It serves as a run time registry for all SOM class objects that have been created or dynamically loaded by the current process.

�9.1	relationships

OODBTG Reference Model

A "relationship" ("association") is a logical relation between instances of one or more classes of objects. Relationships can be binary or n-ary. Binary relationships may be one-to-one, one-many, or many-many.

In generalized object models, a relationship may be realized as a separate class, as an operation along with its result, as a separate modeling construct, or not at all. In different object systems, relationships can be established, traversed, or removed, and may be system or user defined. In different systems, the implementation of relationships may be unidirectional or bi-directional.

OMG Core Object Model

See entry under 9. Noteworthy Objects.

OMG CORBA IDL

Not addressed.

ODMG

Relationships are a kind of property defined between two mutable object types. Relationships are not objects.

A relationship can be one-to-one, one-to-many or many-to-many. Relationships are defined in the interface(s) of the object type(s) involved in the relationship as a "traversal path" from one type to another. A two-way relationship will have a name in each type interface, and an inverse" clause in each path declaration.

EXPRESS

"In EXPRESS the declaration in one entity data type (the declaring entity) of an attribute whose domain is another entity data type (the representing entity) explicitly establishes a relationship between these two data types. This relationship is referred to as a simple relationship, and relates an instance of the declaring entity to one instance of the representing entity." [ISO DIS-10303:11]

The cardinality of this relationship gets considerably more complex as aggregate types and inverse attributes are added. The cardinality in the forward direction of the relation can be constrained by use of various aggregate data types. The cardinality of the reverse direction can be constrained by explicitly naming the reverse direction as an inverse attribute of the second type representing entity and then once again making use of the various aggregate data types for this inverse attribute.

It is common usage in the STEP community to explicitly model whole-part and other relationships using entities, although the language does not directly support this usage. It is likely that future versions of EXPRESS will directly support the modeling of n-ary relationships as first-class objects.

Open Distributed Processing

Treated as an Information Viewpoint concept where virtually any concept of a binary relationship can be defined.

Management Information Model

The inheritance and containment relationships are explicitly represented in the management information model by subclassing and name binding, respectively. Currently, other relationships are represented by the use of attributes whose values are pointers to related objects. Although these methods have been effective so far, much of the semantics of the relationships is hidden.

However, there is currently significant work going on in standards to specify how a relationship between objects may be defined independently of the particular managed object classes that take part in it and independently of attributes that may be used to represent it [ISO/IEC CD 10165-7, GRM]. It provides a general model and specification tools for the definition of relationships among managed objects in order to promote a better understanding of relationships.

The MIS-User needs the ability to manage relationships that exist between managed objects. In order to provide a standardized technique for managing relationships, a relationship model must be defined. The relationship model must satisfy the following requirements: [GRM]

- provide notational tools for specifying behavioral properties of a relationship, such as roles, cardinality and consistency constraints; [GRM + US Comments]

- provide a mechanism to specify new relationship classes based on existing relationship classes;

- provide a mechanism to specify generic reusable relationship classes (e.g., composition, dependency) that are common to multiple applications... [GRM]

A managed relationship is a manageable binding between managed objects, where the characteristics of at least one of the participating managed objects, such as attribute values and behavior, are affected by characteristics of the other participating managed objects. [GRM]

The GRM work also involves the definition of a Relationship Template, which defines the characteristics of a relationship and its roles, and a Relationship Binding Template, which defines the object classes that may be used to fulfill the roles of a relationship.

The general relationship model and specification tools are applicable on two levels:

-	The specification of generic, re-usable relationship classes (e.g., composition, dependency) that are common to multiple applications and that are specified independent of how the relationship is represented in managed object class definitions.

-	The specification of relationships in terms of the characteristics that must be present in the managed objects participating in a relationship, including the specification of the characteristics required for the management of the relationship.

Relationship behavior includes, for example, roles, cardinalities, and entry/departure rules. The relationship behavior is specified in terms of:

-	Invariants that are in effect for the entire lifetime of the relationship

-	Preconditions that identify the conditions valid just before the operations (e.g., adding, removing, and changing participants) used to manage the relationship can be carried out

-	Postconditions that identify the conditions which must hold following the processing of an operation used to manage the relationship.

The specification tools in [ISO/IEC CD 10165-7, GRM] include the definition of a relationship template, and a role binding template. Relationship templates are defined for formally specifying the behavior of a relationship class and its supporting roles. Role behavior includes relationship cardinality, role cardinality, object class cardinality, whether dynamic entry and departure is allowed, and the packages that are (sometimes conditionally) present in a managed object that fulfills this role. Additionally, a role binding template is defined for specifying which object classes may be used to fulfill the roles of a relationship class.

SQL3

Relations (tables) can be used to define generalized n-ary relationships, as in SQL92; referential and other integrity constraints can be defined on these tables. Columns whose types are reference types also allow modeling of relationships in SQL3. References to groups of objects can be specified using rows containing (directly or indirectly) instances of the SQL3 MULTISET(..), LIST(..), and SET(..) collection types (see 9.5 aggregates).

Matisse

The Matisse metamodel specifies the structure of relationships. Inverse relationships are automatically supported. Referential integrity is guaranteed by enforcing the simple rule: "No object can be deleted until its links to other objects are deleted."

The metaclass supports specification of cardinality of a relationship. It also includes user-specified triggers that fire before and after adding or deleting a link.

At the metaclass level, a relationship is a class that is physically stored as a first class object. At the class level, a relationship is an object with instantiated values of the attributes that are specified at the metaclass level. An the instance level, a relationship is physically stored as an OID(s) of a related object(s).

Smalltalk

The most common relationships in Smalltalk are the inter-class relationships defined by the inheritance class hierarchy. In addition, an object is related to another object when it has a pointer to that object. Most implementations of Smalltalk include support for “dependency” using these instance relationships. This serves the need to link objects together and coordinate the behavior between them. An example of this would be for one object to know when a variable value change occurs in a “dependent” object.

Eiffel

A relationship between two classes is established when one class declares an attribute, parameter or local variable, of the other class's type. This is a `client-supplier' relationship. The client is the class using the services of the other. The supplier class is the class that provides the services required by the client. The client-supplier relationship is one-way, it can only be traversed from the client side.

See also entry under 8. Inheritance and Delegation.

System Object Model (SOM)

Not addressed.

Analysis and Design Methods

SA:	Relationship includes ordinary ERD relationships and the ‘is-a’ relationship for sub/supertyping and inheritance. Relationships are not considered to be objects.

CA:	‘Association,’ is used, defined generally as “the union or connection of ideas.” The technical meaning does not seem to be defined explicitly. This term corresponds to the term ‘relationship’ as used by others. Associations are not considered to be objects.

RA:	“A link is a physical or conceptual connection between object instances.” Links are not considered to be objects.

“An association describes a group of links with common structure and common semantics.” The terms ‘link’ and ‘association’ correspond to the term ‘relationship’ as used by others, while distinguishing between instances of relationships and the class of all such instances.

“A link attribute is a property of the links in an association.”

“A role is one end of an association...which may have a role name.”

“A qualified association relates two object [classes] and a qualifier. The qualifier is a special attribute that reduces the effective multiplicity of an association. One-to-many and many-to-many associations may be qualified. ... Qualification usually reduces multiplicity from many to one, but not always.”

JA:	“The models objects [instances] ... have relations with each other. ... These relations can be of two sorts. First, static relations, namely relations existing over a longer period, which means that two objects know about each other’s existence. Secondly, dynamic relations, namely relations by which two objects actually communicate with each other. There is an abundance of different static relations in connection with semantic modeling” Relationships are not considered to be objects.

Inheritance relations are an association between classes.

“A class association ... is an association between classes.”

An instance association is an association between instances.

“An acquaintance association is a static association between instances and means that the instance knows of the existence of another instance.”

“A communication association models communication between two objects. Through these associations, an object sends an receives stimuli.”

“There is a large and fundamental difference between data modeling and object orientation. In data modeling, you think of the model as a flat structure viewed from above. In this way it is natural to see the relationship as a binding between two objects. The relationship here is often bi-directional. In object orientation, however, the view is instead made from an object [instance], you place yourself at an object and then see what references you have to other objects. This fundamental difference is hard to get used to for people used to data modeling.”

WD:	Types of relationship include: “depends-upon,” “has-knowledge-of,” “is-analogous-to,” “is-kind-of,” and “is-part-of.” Relationships are not considered to be objects.

MD:	[A] “field [of an object, and, likewise, an attribute of a class] may contain references to other objects.” The relationships indicated by these references are to objects. Relationships are not considered to be objects.

EA:	“A relationship establishes a logical connection among objects.” “A relationship set is a set of relationships where each matches the same template [“with object classes designating slots for objects and phrases that express a logical connection among the objects”] and has as its name the text of the same template.” “Special types of relationship sets include... the is a relationship set, the part of relationship set, and the is member of relationship set.” Relationships are not considered to be objects.

FA:	“A relationship is a tuple of objects...” “The object model shows classes, not objects. Thus we extend the notion of relationship to classes. In the object model a relationship is used to model the idea of associations or correspondence between the objects belonging to classes.” Relationships are not considered to be objects.

OA:	“Associations provide a means to link objects of various types in a meaningful way. While object types involve sets of objects, associations involve connections of objects between sets. ... This collection of connections between object types forms a special kind of object type called a relationship type. Furthermore, using these connections enables us to map the objects of one set into objects of another—and back again. Together, relationship types and mappings are two techniques for describing associations between objects.”

BD:	“In all, there are three kinds of class relationships[:]” generalization/specialization, whole/part, and association. Association is “[a] relationship denoting a semantic connection between two classes.”...A “link [b]etween two objects is one instance of an association.” Associations do not indicate direction; links are unidirectional.

HA:	“Relationships between classes ... are association, aggregation and generalization.” “Association is a meaningful relationship between two O/Cs such that one O/C may request a service from another. This represents the direct use of the services of one O/C by another”

NA:	“Relation[:] A dependency between two entities; used ... as an abbreviation for the term relationship.” There are three kinds of relationships. “Only two kinds of static relations are needed in object oriented systems, inheritance relations and client relations.” “For the [dynamic] relationship between a calling object and the callee, we use the term ... message relation ...”

�9.2	attributes

OODBTG Reference Model

In some object models, object interfaces only contain explicitly defined operations. In other models, interfaces include operations which are implicitly defined in terms of logical "attributes" ("properties", "instance variables", "data members") or other structural constructs (independent of implementation). Typically, defining an attribute A implicitly defines the inclusion of operations such as Get A and/or Set A in the interface of an object.

Attribute values are defined by a class which constrains possible values. Attribute values may be single- or multi-valued. Attributes are sometimes used to represent binary relationships.

OMG Core Object Model

See entry under 9. Noteworthy Objects.

OMG CORBA IDL

An interface may have attributes. An attribute is logically equivalent to declaring a pair of accessor functions: one to retrieve the value of the attribute and one to set the value of the attribute. An attribute may be read-only, in which case only the retrieval accessor function is defined [CORBA Specification 2.2.7 Attributes].

ODMG

Attributes are a kind of property defined on a single object type. Attributes take literals as their values. Attributes are accessed by get_value and set_value operations; they are defined as part of the type interface - there are no implications about the implementation of the object type. Attributes are not first class objects (they cannot have properties or be subtyped), however the built-in get_ and set_value operations can be overridden. (Note that because attributes take literals as their values, defining, for example, a Department "attribute" of a Person object having a Department object as its value requires the use of an ODMG relationship instead. See 9.1 relationships.)

EXPRESS

An attribute represents a property of an entity which can be represented by a value of some type. There are three kinds of attributes in EXPRESS: an explicit attribute is one whose value must be given by external means; a derived attribute can be computed from the values of other attributes; and an inverse attribute establishes a name for the inverse direction of the relationship established by an explicit attribute.

Open Distributed Processing

Technically, treated as a relationship

Management Information Model

Managed objects have attributes. An attribute has an associated value, which can exhibit structure, i.e., it can consist of a set or sequence of elements... The value of an attribute may be observable (at the managed object boundary). The value of an attribute can determine or reflect the behavior of the managed object. ...Operations on attributes are defined to be performed upon the managed object that contains the attributes and not directly upon the attributes. The managed object is able to enforce constraints on attribute values to ensure internal consistency. The definition of a managed object class can specify constraints between the values of the individual attributes. The operations that can be performed on a particular attribute are specified in the definition of the managed object class. [Part 1]... A management operation that is performed on one or more attributes of a managed object can result in other observable changes; these are called indirect effects. Indirect effects are the result of the relationships in the underlying resource. The following indirect effects can occur:

- a modification of an attribute value within the same managed object;

- a change in behavior of the managed object;

- a modification of an attribute in a related managed object;

- a change in the behavior of a related managed object caused by the modification of one or more attributes in the target managed object. [Part 1]

Attributes are properties of an object class and characterize some aspect of it. For the operations interface, attributes represent information that is essential to the management of the network. An attribute is not necessarily a record field (i.e., actual stored value) in a system and, for example, may be computed or derived from one or more stored values. An object instance may differ from another instance of the same object class in its attribute values and, because of conditional packages, in the actual set of attributes that it contains.

An attribute is defined in terms of its behavior, the possible values it may exhibit, the valid tests (matching rules) that may be performed on its value, and any specific errors that may cause a processing failure as a result of performing attribute-oriented management operations. The attribute syntax defines the possible values an attribute may exhibit and is defined using ASN.1 notation. An attribute definition may also be derived from another attribute definition. In this case, the derived attribute has the same syntax as the attribute from which it is derived, but may add additional behavior , matching rules or specific errors.

The attribute syntax identifies the common properties of the collection of values that an attribute may have and is defined using ASN.1 [CCITT X.208, ASN.1]. Examples of attribute syntax that may appear in an ASN.1 notation are INTEGER and BOOLEAN. In addition, the attribute may be defined to assume either only one value (single-valued) or multiple values (set-valued).

An attribute group defines a collection of attributes on which a single operation may be applied to affect the member attributes of the group. Allowable operations on an attribute group are retrieving attribute values and replacing the attribute values with their default values. The attribute group defines the minimum set of attributes of the group and may be extended by adding new attributes in a managed object class definition. However, an attribute group may also be defined as FIXED, in which case the attribute group is not extendible.

SQL3

There are two types of ADT attributes, stored attributes and virtual attributes. A stored attribute is specified by giving an attribute name and a data type. The data type of a stored attribute can be any known data type, including another ADT. Each stored attribute implicitly declares a pair of functions to get (observer function) and set (mutator function) the attribute value. A virtual attribute has a value that is derived or computed by a user-defined observer function. Because ADTs are encapsulated, and because the syntax for function invocation is the same for any attribute, only the type owner and subtype definers would ever be aware of this distinction.

Columns of tables can also be used to represent attributes, as in SQL92.

Matisse

At the metaclass level, Attribute is an object that is part of the metaclass. Its attributes are external name, default value, constraint function, index function, pre-modification trigger, and post-modification trigger. The values of attributes of Attribute are stored as part of the binary object which represents an instance of Attribute.

An instance of Attribute can be associated with an instance of the metaclass Class. The instance of Class, (i.e. a class, like Person or Company) is stored as a binary object with links to a binary instance of Attribute (i.e. Name or Address).

An instance of Person is stored as a binary object. Attribute values are embedded in the binary object at this level.

C++

Attributes correspond to data members in C++. C++ data members may be public, and therefore visible at object interfaces.

OOCOBOL

Objects are accessed through interfaces consisting of sets of methods. Data cannot be defined as PUBLIC, and therefore cannot be visible at an object interface.

�Smalltalk

Attributes are known as class and instance variables in Smalltalk. A Smalltalk object’s instantiated variables are stored in its private memory and called instance data. Instance variables can be “named” (accessible by name from the methods within the object instance) or “indexed” (accessed by pointer reference). Smalltalk does not support public attributes.

Eiffel

Attributes in Eiffel can become part of the public interface if exported. They represent the state of the object in question. When exported, they are exported in read-only form. Only the class itself can change the values of its attributes.

System Object Model (SOM)

SOM classes support attributes. An attribute can be thought of as an instance variable that has accompanying "get" and "set" methods. The get and set methods are invoked the same way as other methods.

OLE Component Object Model

As described in the entry under 2. Objects, Windows Objects are accessed through interfaces consisting of sets of functions. Windows Objects that include "data" to be made available to users can be defined with a special interface for accessing that data. Specifically, a data object is a Windows Object that provides a standard data transfer interface called IDataObject. IDataObject includes, among other things, functions for getting and setting data (GetData, SetData, GetDataHere), for querying the ability of the object to provide data in specific formats (QueryGetData), and for notifying clients of the data when the data changes in various ways(DAdvise, DUnadvise).

Analysis and Design Methods

SA:	“An attribute is an abstraction of a single characteristic possessed by all entities that were themselves abstracted as an object.” They are atomic in the sense of RDB first normal form. These attributes are not objects.

CA:	“An attribute is some data (state information) for which each Object in a Class has its own value.” Normalization, in the RDB sense, is deferred to design. These attributes are not objects.

RA:	“An attribute is a data value held by the objects [instances] in a class. ... An attribute should be a pure data value, not an object. Unlike objects, pure data values do not have identity.”

JA:	“To store information, objects [instances] use attributes. To each entity object we can thus tie several attributes. Each attribute has a type, which can be of a primitive data type, ... but it can also be of a composite data type which is more complex and that is especially defined.” The attributes of an object are modeled by an association with a name, a cardinality, and a type. These attributes are not objects.

WD:	Attributes are not modeled during design, instead the model is in terms of “the responsibilities of an object to maintain information...”

MD:	“[A]n attribute is a component in a class that will give a field in each object of the class. These attributes are not objects.

EA:	None.

FA:	“In addition to being able to be identified, an object can have one or more values associated with it. ... The attribute values of an object can be changed, but the number and name of the attributes are fixed. ... [D]uring the analysis phase, the values of attributes are not allowed to be objects. Attributes assume values from types such as integers, booleans, text, and enumerations.” “Relationships as well as objects can have attributes.” During design “... some data attributes and object-valued attributes are established.”

OA:	An attribute is “[a]n identifiable association that an object has with some other object or set of objects that is represented within an object type.” The term, attribute, is also used in discussion of entity-relationship-attribute modeling.

BD:	“...[A]n attribute denotes part of an aggregate object ... used... to express a singular property of the class. To be precise, an attribute is equivalent to an aggregation association with physical containment, whose label is the attribute name and whose cardinality is one.”

HA:	“Properties are services (responsibilities) of a class that involve information being disclosed about the state of an object. Properties may be viewed as queries on the state of an object and hence should not have side effects on state (Meyer, 1988a). Properties that return objects are viewed no differently from properties that return ‘values’.” “... [T] is no conceptual distinction between ‘values’ and ‘objects’ (Beeri, 1990).

Properties that return ‘values’ are often termed ‘attributes’ although this does not necessarily imply a physical piece of stored data.” “The word attribute is reserved for those data stored privately (private services) — the decision to define the internal data structure may be taken at almost any stage of the lifecycle although preferably left until late in the design process.”

NA:	“Attribute[:] A property of an object manifested as a function returning a value.”

�9.3	literals

OODBTG Reference Model

"Literals" are objects such as numbers and character strings. Literal values are similar to created objects in that both may occur as operands of operations. Literal values are different from created objects in that they have immutable state and they do not have a create operation because their representations are explicitly recognized. For example, multiple occurrences of the same literal number are all references to the same point on the number line. Operations which return literal values are constructing references to objects, not creating objects. In most object systems, if X and Y are literals, X == Y only if X and Y represent the same literal.

OMG Core Object Model

4.2.4 Non-object types

Many object systems, for example C++ and CORBA, explicitly distinguish between objects and things that are not objects5. The Core Object Model has chosen to recognize that this distinction exists. Things that are not objects are called non-objects6. Objects and non-objects collectively represent the set of denotable values in the Object Model.

In the Core Object Model, non-objects are not labeled by an object reference, and therefore cannot be the controlling parameter for an operation request. Each non-object can be considered to belong to a type of value, called a Non-object type. This is analogous to objects being instances of types. Non-object types, however, do not belong to the Object type-hierarchy. Thus non-object types are not subtypes of Object. Moreover, the rules for subtyping and inheritance defined later in this section do not apply to non-object types. Components can add more structure to the non-object types; for example, a component could define subtyping and inheritance rules for non-object types.

The Core does not specify a set of non-object types; these types are defined in a component and chosen for inclusion in a Profile. For example, CORBA would define in its profile that the non-object types would include: Short, Long, UShort, Ulong, Float, Double, Char, String, Boolean, Octet, Enum, Struct, Sequence, Union, and Array. The set of non-object types can be extended by adding new types to the Non-object component.

Editor's Note: Presumably, any operations defined for non-object types would also have to be defined in components, since operations can only be defined on object types in the Core.

Profiles can choose which non-object types to support. In a pure object system, such as Smalltalk, all denotable values are expressed as objects and so the set of non-object types may be empty. Thus profiles are allowed to make the difference between the set of objects and set of non-objects that they recognize as wide or as narrow as needed.

The set of all non-object types is called NTypes. The set of all non-objects is called Nobj. The complete set of values that may be manipulated in the Core Object Model is described as DVal = Obj » Nobj. DVal can be thought of as the denotable values in the Core Object Model. The elements of DVal are called dvals. DVal is not a type in the Core Object Model. It does not exist as a supertype of Object and the types in NTypes. Therefore, you cannot specify, for example, an operation parameter that may be either an object or a non-object. This eliminates the difficulty of systems having to provide run-time discrimination of objects and non-objects.

The remainder of this section deals primarily with objects. Unless otherwise noted, when this chapter refers to type it means object type.

5 In the sense that objects have been defined in the Core Model.

6 Examples of non-objects are the basic and constructed values as defined in the CORBA specification.

OMG CORBA IDL

See entry under 7. Types and Classes.

ODMG

Literals are immutable objects - either atomic (integer, float, Boolean, character) or structured. Structured_literals have two subtypes - Immutable_Collection (bit strings, character strings, and enumerations are built-in) and Immutable_Structure (date, time, interval). Additional subtypes can be defined, but operations on the built-in literal types cannot be redefined. The literal types are expected to directly map to types in the programming language. If the language does not have an analog for one of the literal types, the type must be defined in a library provided as part of the language binding.

EXPRESS

EXPRESS supports literals of all of the primitive types (integer, string, etc.), as well as enumeration literals.

Open Distributed Processing

Only objects are addressed, of which literals could be considered a special type of object.

Management Information Model

Abstract Syntax Notation One (ASN.1) [CCITT X.208] is the formal notation used to abstractly describe the syntax of information structures to be exchanged between managing and managed systems. It enables the definition of types of information that need to be transferred using the CMISE services. The information model and the information associated with specific attributes, actions and notifications are definitively described using ASN.1. The full, detailed set of requirements for the operations interface, therefore, includes not only the textual descriptions of the information model and the specific information of Actions and Notifications, but also their ASN.1 definitions.

The ASN.1 definitions used in a document that defines a management information model using the GDMO templates are found in ASN.1 modules. ASN.1 modules contain both type references and value references. In the GDMO templates, type references are used to define the syntax of attributes (including permitted values and required values which are subtypes of the attribute type), action information and reply syntax, notification information and reply syntax, and parameter syntax. Value references are used to define specific values of defined ASN.1 types. In the GDMO templates, value references are used to define attribute default values and attribute initial values.

SQL3

In SQL3, literals are used to specify non-null values. The rules for forming literals for the various built-in types are contained in the draft standard [ISO96a]. ADTs do not have literal values. Row type literals are formed by concatenating values for the individual columns, as in:

CREATE TABLE employees

 (name CHAR(40),

 address ROW(street CHAR(30),

 city CHAR(20),

 zip ROW(original CHAR(5),

 plus4 CHAR(4))));

INSERT INTO employees

VALUES(‘John Doe’, (‘2225 Coral Drive’, ‘San Jose’, (‘95124’, ‘2347’))));

Matisse

Attributes values in Matisse can be literals or sets of OIDs. The user can define constraints on literals which will be enforced by the database. Literals include the following types:

 Characters

 ASCII characters

 Arrays

 Lists

 Floating point numbers

 Lists of floating point numbers

 Double precision numbers

 Lists of double precision numbers

 Strings

 ASCII strings

 String arrays

 ASCII string arrays

 String lists

 ASCII string lists

 Arrays of 8, 16, and 32 bit words

C++

C++ supports all the value types provided by C, in addition to objects (instances of classes).

OOCOBOL

Ordinary COBOL literals are supported.

Smalltalk

There are five types of literals in Smalltalk. Those literal types are:

•	Numbers

•	Character constants

•	Strings

•	Symbol constants

•	Arrays of the previously described literals.

Eiffel

Eiffel supports literals for the basic class types: INTEGER, STRING, REAL, CHARACTER and bit sequences. There is also a manifest form for ARRAY.

Emerald

As noted under 2. Objects, Emerald objects may be defined as being immutable.

�System Object Model (SOM)

SOM literal types are characters and integers.

Analysis and Design Methods

This concept seems to belong to languages and software construction, rather than to analysis and design.

�9.4	containment

OODBTG Reference Model

There are various sorts of "containment constructs" in object models. They can be characterized by how containment is established and what it signifies. Models which support an attribute concept sometimes consider all the values of an object's attributes to be contained in the object. Some models assume that objects have a natural intrinsic content, in the sense that a document consists of some text, or a file consists of a byte string. In other models, literal values are considered to be contained in the object, while non-literals are not. In some models attribute values may be either objects or pointers to objects; objects which are pointed to are not considered part of the object. There may be an explicit "contains" relationship among objects, so that an object contains those objects which are so related to it. Containment may be treated as a property of a relationship, allowing various relationships to be designated as implying containment.\footnote{The notion of containment captures the implementation notion of "reference".}

Abstractly, the semantics of containment can be described in terms of "propagation" of operations, resembling a form of inheritance. A request to print or move a document is expected to print or move the text of the document, along with any diagrams or other sub-objects contained in it. Thus, for certain operations "f", if "x" "contains" "y" then "f(x)" is expected to cause "f(y)". Details vary. There may be different decompositions of a given object into constituents: a book may be composed of chapters and paragraphs, and also of pages and lines. Different operations may propagate in different ways along different containment paths. Destroying an object might or might not destroy a contained object. This might or might not depend on whether the latter is also contained in some other object. The authors and font of a book may or may not be the authors and font of its chapters.

Object systems often support value-based "equality comparison operations" which allow objects to be "equal" even if they are not identical. Equality is defined differently in different systems, may be system- or user-defined, and may be class-dependent. Equality comparison operations may depend on the primitive identity comparison operation "==", on value comparison operations, on containment comparison operations, or in terms of equivalent behavior.

OMG CORBA IDL

See entry under 7. Types and Classes.

EXPRESS

EXPRESS has no concept of containment.

�Open Distributed Processing

ODP makes extensive use of composition of objects.

Management Information Model

(See entry under 9.1 relationships for an overview of relationships.)

The managed objects in an information model are often interrelated. (Note that inheritance is a relationship between managed object classes not objects.) The relationships between managed objects are a critical aspect of the information model. Modification to these relationships require integrity constraints to be maintained. Currently, there are three ways to represent relationships in an information model: a) containment through naming, b) relationship attributes, and c) relationship objects. However, within ISO, a model [ISO/IEC GRM] for formally specifying the behavior of relationships between managed objects is being developed independent of how the relationships are represented.

a) Containment

Containment describes how an object may physically or logically be part of another object. An object may only be contained in one other object. Containment relationships are formally defined by the use of name bindings, which specify the superior and subordinate objects, the attribute used for naming, and any creation and deletion rules. More than one name binding may be defined for a particular object class, but only one name binding may be supported by an instance of the object class.

To allow access or referencing of managed objects, common unique names are needed for the objects. The management information model adopts the containment relationship for naming managed objects within a given context. This relationship describes how an object may be, physically or logically, part of another object.

The contained object is termed the subordinate object, and the containing object is termed the superior object. Superior and subordinate objects may be instances of the same object class or different object classes. Additionally, an object class may have more than one containment relationship, depending on the application. However, each subordinate object instance is directly contained within one, and only one, superior object instance. The hierarchy of superior and subordinate object instances is used for naming object class instances and is called the Naming Tree, or Containment Tree.

A name binding identifies a valid naming relationship in which instances of the subordinate object class may be named with respect to instances of the superior object class. Along with the names of the subordinate and superior object classes, a name binding definition includes the attribute used for naming, and information about how instances that use this name binding may be created and deleted. Additionally, a name binding definition may indicate if the name binding also applies to all subclasses of the subordinate and to all subclasses of the superior object classes.

b) Attributes

Other relationships are defined using relationship attributes, also called "keys". Relationship attributes are not differentiated from other attributes in the templates but are attributes that interrelate managed objects. The attribute values, having ASN.1 syntax of Object Instance (which is either Distinguished Name [DN] or local name), are pointers to objects to which the managed object is related to. The behavior definitions of the relationship attribute and the related objects are used to characterize the behavior of the relationship.

c) Relationship Objects

Objects can also be used to represent relationships when a relationship itself has information associated with it. Objects of this type are called "relationship objects", and the information associated with the relationship is made visible through the attributes. Operations that affect the relationship may be directed to this object.

Relationship objects may also have relationship attributes that point to the objects participating in the relationship. The behavior of a relationship object is used to indicate the behavior of the relationship itself. However, relationship objects are not differentiated from the other managed objects in a managed system.

General Relationship Model

However, using the model in [ISO/IEC CD 1016507, GRM], relationship classes may be explicitly defined independently of managed object class definitions. These relationship class definitions may be used to provide generic reusable relationship classes that are common to multiple applications. These relationship classes may be reused by many applications via subclassing. Examples of these relationship classes include:

General Composition: There exists two roles for the general composition relationship class: composite role and component role. Exactly one participant in the composite role must exist and correspond to one or more participants in the component role for an instance of the general composition relationship class to exist. Participants in the component role may be of different managed object classes with 0 or more instances of each of the managed object classes bound to the component role. At least one property of a composite participant exists such that it depends upon properties of its components. A composite must also have at least one property that is independent of its components' properties (at least, identity). Creating updating or deleting a component does not change the identity of the composite.

Dependency Relationship: There exist two roles in the dependency relationship class: parent role and dependent role. The existence of a participant in the dependent role implies the existence of a corresponding participant in the parent role. The participant fulfilling the parent role must exist before another participant can fulfill the dependent role. In other words, a participant in the dependent role cannot exist by itself. The object class cardinality of the dependent role is exactly equal to one, that is participants fulfilling the dependent role must all belong to the same object class.

Symmetric Relationship: There exists two roles for the symmetricRelationship relationship class: sR role and participating entity role. Exactly one participant in the sR role must exist and correspond to two or more participants in the participating entity role for an instance of the symmetric relationship class to exist. Both roles in the symmetricRelationship are static: once established, nothing can be changed.

SQL3

SQL3 supports the concept of values being contained within values (e.g., instances of row types, or collections of such instances, can be contained in a column of a row) or within ADTs. A form of containment semantics can also be implemented by specifying triggers to enforce cascaded manipulations of a collection of data structures when one of them is manipulated. This kind of containment must be specified by the user.

Matisse

Complex structures can be embedded in a Matisse object as a literal value. For relationships, OIDs are specified and the linked objects are not contained in the sense that deletion and other actions are not automatically propagated unless the user specifies an appropriate trigger.

C++

A data member of an object class can be defined as having a type that is either a type defined by an object class (in which case it will contain an actual object) or a type that is a reference to an object class, e.g., as being either type X or type X* (a pointer) or X& (a reference). A class can be declared within another class; such a class is called a nested class. The name of a nested class is local to its enclosing class. A class can also be declared within a function definition; such a class is called a local class. The name of a local class is local to its enclosing scope.

Smalltalk

Smalltalk furnishes a number of different types of “collection” classes that support containment groupings of objects in various ways that provide specific behavior for the given type of collection. The following collections are standard in most Smalltalk implementations:

•	Set

•	Dictionary and IdentityDictionary

•	Array

•	String

•	Symbol

•	OrderedCollection

•	SortedCollection

•	Interval

Eiffel

Containment of objects can be realized by using an expanded object. An object that contains another can either have a reference to that object or hold the object itself. When an object holds another directly it is called an expanded type.

This can be declared in two ways. The class to be referenced may be declared as expanded:

	expanded class A

	...

or the entity (attribute) may be declared as expanded:

	a: expanded A

In both of these cases the object will be contained within another. There is no need for dereferencing. See entry under 2.6 state.

Emerald

See 9.6 other.

System Object Model (SOM)

SOM is a basic technology and therefore does not have a notion of one object containing another. However, since SOM is a library packaging technology it supports the construction of SOM objects which can contain other SOM objects.

OLE Component Object Model

See entry under 8. Inheritance and Delegation.

Analysis and Design Methods

[Note: The contributor takes ‘containment’ to refer to the concept whereby objects are considered to be composite, that is, to be composed of other objects which are contained within the composite object. This sense corresponds to the implementation whereby component objects are ‘physically contained’ within the composite object (thinking of a composition mechanism is possible in C++, but not in Smalltalk). As will be seen, the term is used differently by most authors.]

SA:	Containment is considered to be a kind of ordinary relationship. An object is not ‘within’ another object; rather, an object has a “referential attribute,” identifying the other object. Instances of containment relationships are not necessarily objects.

RD:	“Many implementation data structures are instances of container classes. Such data structures include arrays, lists, queues, stacks, sets, bags, dictionaries, associations, trees, and many variations on these...”

JA:	“A special type of acquaintance association [See 9.1 relationships] is the consists-of association, which is used to express that an object is composed of other objects. Such a structure where a uniting object has associations with participating parts is sometimes called an aggregate.” Instances of this relationship are not necessarily objects.

WD:	Containment is modeled by the “is-part-of” relationship. A distinction is made between “composite classes” and “container classes.” A composite class has responsibilities with respect to its parts and will commonly collaborate with or delegate to them. An example is car, composed of wheels and other parts. A container class has a weaker relationship to its contents. Examples are array and hash table. Instances of both kinds of classes are, of course, objects; however, container classes are designed specifically to model containment.

MD:	“It is often convenient to introduce ... objects that refer to other objects. ... One technique is to allow objects to contain other objects... This technique is indeed possible... [b]ut it does not permit sharing. To allow for shared objects, fields may contain references to other objects.”

EA:	

OA:	“Composition is often confused with containment or topological inclusion. Topological inclusion is the relationship between a container, area, or temporal duration and that which is contained.” See 9.5 aggregates.

BD:	“Aggregation may or may not denote physical containment.”

HA:	“A structure that may be useful in Implementation is that of the composite class: a class defined with internal classes whose definitions are local and are not externally visible, i.e. lexically included classes”

NA:	“...[W]e should define a standard set of generic [container] classes ... for use as specification elements for very high-level information structures.” [See matrix entry for Eiffel.]

�9.5	aggregates

OODBTG Reference Model

"Aggregate objects" such as sets, bags, lists, tuples, arrays, etc.,\footnote{These are logical constructs distinct from implementation-specific data structures.} are containment constructs that group other objects organized in some manner. Aggregates typically support operations to access individual members, and to iterate over all members, as in queries. Aggregates may be "homogeneous", containing only objects from the same class or from classes inheriting from the same class, or they may be "heterogeneous", containing objects from any class.

With respect to identity, there are two kinds of aggregate objects. "Intensional" aggregates have an identity based upon their creation event. "Extensional" aggregates have an identity based upon their membership. If X and Y are the LIDs of extensional sets, then X == Y is equivalent to X and Y having the same members. For an intensional set, the membership at any time corresponds to an extensional set. Two intensional sets remain distinct objects if they have the same members. If the membership of an intensional set changes, the identity of the set does not change.

OMG CORBA IDL

Not addressed.

ODMG

Structured objects (aggregates) can be of type Structure or type Collection. Structures are records with named slots which can be filled by objects or literals of different types. Collections are homogeneous (modulo subtyping) groupings of elements that may or may not be ordered.

Built-in collection types are set, bag, list and array. Sets and bags are unordered collections; lists and arrays are ordered. Arrays are variable length (although an initial size is specified at creation) and can contain nil values.

Collection types are instances of parameterized types. They can be parameterized by any subtype of Denotable_Object. There are two subtypes of collections: predicate_defined and insertion_defined. A type extent is a predicate_defined collection.

Mutable collections (subtype of Structured_Object) have intentional semantics. Immutable collections (subtype of Structured_Literal) have extensional semantics.

Iterators can be defined to traverse collections. Type Collection also defines predicate-based select operations. Query operations apply to any collection (extents, user-defined). The result of a selection is a subcollection of the same type as the collection queried. Each of the more specific collection types defines appropriate query operations. Of course, the literal collection types do not define update operations (insert, delete, replace).

EXPRESS

The aggregation types are array, bag, list and set. Arrays and lists can optionally require that their elements are unique, essentially providing indexed and ordered sets, respectively. This uniqueness and that of a set is based on deep comparison and not on instance identity. Aggregates in EXPRESS are extensional: an aggregate value has no identifier of its own.

Open Distributed Processing

In ODP, aggregates would likely be treated as a composition of object (i.e., a new object) with a particular behavior.

Management Information Model

Not applicable.

SQL3

SQL3 provides row types as literal structures. Instances of row types can be used as values in tables; row types can also be nested. A number of predefined parameterized collection types are also defined. A collection may be specified as SET(<type>), MULTISET(<type>), or LIST(<type>). In each case, the <type> parameter (called the element type) can be a predefined type, an ADT, a row type, or another collection type. For example SET(INTEGER) and SET(LIST(INTEGER)) would both be valid declarations, as would SET(movie) and SET(LIST(movie)), where movie is some previously defined ADT. At present, the element type cannot be a reference type, nor can it be a named row type containing a field whose type is a reference type.

A collection can be used as a simple table in queries. In this case, each element of the collection corresponds to a row in the table. The table is treated as having a single column whose type is defined by the type of the instances of the collection. Since collection types are data types, they must be declared as the types of table columns in order to store instances of collections persistently in the database.

Matisse

Matisse literals support aggregates as lists and arrays. Class relationships support a list of OIDs specifying links to other objects. Any type of aggregate can be supported, but the user must specify the behavior by supplying the appropriate links and triggers.

�C++

C++ supports C aggregate types (arrays, structs, and unions) in addition to (object) classes. A C++ struct is considered as a class without default access restrictions. Additional aggregate types can be defined using class templates. See 7. Types and Classes.

OOCOBOL

Ordinary COBOL aggregates are supported. The definition of parameterized collection objects is being investigated.

Smalltalk

See entry under 9.4 containment.

Eiffel

Aggregate objects are realized through generic types. A class may be declared with a number of formal generic parameters that specify the type of objects that it can operate on. For example, the HASH_TABLE class in Eiffel has the following class header:

	class HASH_TABLE [T, U -> HASHABLE]

	...

Both T and U are generic parameters. Code within the class can refer to both of these parameters as types. The parameter U is restricted by the class HASHABLE. i.e., U must conform to HASHABLE. In this class T is the type of object that will be stored in the structure while U is the type of the key used in the storage management.

Such generic aggregate types include linked lists, hash tables, sets and so on. However these are not defined by the language, but are supplied as class libraries.

SELF

SELF supports two special aggregates: object arrays and byte arrays. Arrays contain only a single parent slot pointing to the parent object for that kind of array, but contain a variable number of element objects. Byte arrays differ from object arrays in supporting a special compact storage format.

System Object Model (SOM)

Aggregation is used in SOM to represent collections of basic data types. The aggregation types as expressed in C are struct, union and enum.

OLE Component Object Model

See entry under 8. Inheritance and Delegation.

Analysis and Design Methods

[Note: The contributor takes ‘aggregation’ to refer to the mechanism whereby a (composite) object has relationships to other objects, which relationships mean that it is composed of the other (component) objects. (Strictly, that the composite object represents something composed of other things represented by the component objects). This sense corresponds to the implementation whereby a composite object consists of, or otherwise maintains access to, the identifiers of a fixed number (or a variable number, zero or more) of other objects (thinking of the only possible composition mechanism in Smalltalk). Most authors use the term in this sense.]

SA:	

CA:	Classes may be organized in whole-part structures.

RA:	“Aggregation is a strong form of association in which an aggregate object is made of components. Components are part of the aggregate. The aggregate is semantically an extended object that is treated as a unit in many operations, although physically it is made of several lesser objects.” “Aggregation is a special form of association, not an independent concept.”

JA:	“A special type of acquaintance association [See 9.1 Relationship.] is the consists-of association, which is used to express that an object is composed of other objects. Such a structure where a uniting object has associations with participating parts is sometimes called an aggregate.”

WD:	Aggregation is modeled by the “is-part-of” relationship. A distinction is made between “composite classes” and “container classes.” A composite class has responsibilities with respect to its parts and will commonly collaborate with or delegate to them. An example is car, composed of wheels and other parts. A container class has a weaker relationship to its contents. Examples are array and hash table. Instances of both kinds of classes are, of course, objects; however, container classes are designed specifically to model containment.

MD:	Aggregates are to be found in or built for a library.

EA:	The is part of “relationship set declares that an object, called a superpart or aggregate, is composed of other objects called subparts or components.”

FA:	“Aggregation: a mechanism for structuring the object model whereby a new class in constructed from several other classes and [(optionally)] relationships.” “An aggregation may be used to ‘wrap up’ a relationship. In this case the tuples of the aggregate must respect the contained relationship.”

OA:	“Composition (also referred to as aggregation) is a mechanism for forming a whole from component parts.” Types of composition are distinguished and discussed in detail.

BD:	“Aggregation denotes a whole/part hierarchy, with the ability to navigate from the whole (also called the aggregate) to its parts (also known as its attributes). In this sense, aggregation is a special kind of association.”

HA:	“Aggregation structures represent the is-part-of relationship.”

NA:	“An aggregation relations between a client class and a supplier class is a special case meaning that whenever an i

��9.6	other

OODBTG Reference Model

In various object models, the following may not be treated as objects

 o operations.

 o classes/types.

 o some of the arguments of an operation.

 o the result of an operation.

 o relationships and attributes.

 o literals.

 o aggregates.

ODMG

Type Exception is provided by the object model, and may be subtyped. Operation signatures can indicate exceptions that can be raised. When an exception is raised it is handled by the exception handler in the closest scope and transactions within that scope are aborted.

Matisse

The Matisse metamodel consists of a set of objects that make up the metaclass. Class schemas are objects in their own right.

C++

See 7. Types and Classes.

Eiffel

None.

Emerald

In Emerald, all objects are coded using the single object constructor concept. At compile time, the Emerald compiler chooses among several implementation styles for the object, picking one that is appropriate to the object's use. Three different implementation styles are used:

1. Global objects can be moved within the network and can be invoked by other objects not known at compile time (in other words, references to them can be exported). They are heap allocated by the Emerald kernel and are referenced indirectly. An invocation may require a remote procedure call.

2. Local objects are local to another object (i.e., a reference to them is never exported from that object). They are heap allocated by compiled code. These objects never move independently of their enclosing object. An invocation may be implemented by a local procedure call or by inline code.

3. Direct objects are local objects except that their data area is allocated directly in the representation of the enclosing object. These are used mainly for built-in types, and other simple objects whose organization can be deduced at compile time. [BHJL86]

SELF

A method object is a prototype activation record. When evaluated, the method object clones itself, fills in its self slot with the receiver of the original message, fills in its argument slots (if any) with the arguments of the message, and executes its code. The self slot is a parent slot so that the cloned activation record inherits from the receiver of the original message. [US87]

SELF allows programmers to define their own control structures using blocks. A block contains a method in a slot named value; this method is special in that when it is invoked (by sending value to the block), the method runs as a child of its lexically enclosing activation record. The self slot is not re-bound when invoking a block method, but instead is inherited from the lexically enclosing method. Block methods may be terminated with a non-local return expression, which returns a value not to the caller of the block method, but to the caller of the lexically-enclosing non-block method, much like a return statement in C. [CUL89]

OLE Component Object Model

The use of the object linking supported by OLE can introduce problems in maintaining referential integrity. Specifically, since the data referenced by linked objects lives in a separate file on the file system, links are easily broken when the end user manually changes the location of that file...To solve most of the link breakage problems as well as to provide for arbitrarily deep object nestings, OLE uses a type of object called a moniker.

A simple moniker contains some reference to a linked object and contains code that knows how to "bind" to that linked object. Binding is the process of launching the application that handles the class of the linked object, asking the application to load a file in which the object lives, then asking the application to resolve the name of the object down to an object pointer.

A file moniker is used to store either an absolute or relative pathname. A linked object maintains an absolute moniker and a relative moniker. If it fails to locate the file with the absolute, it tries the relative moniker. Complex object references are described using composite monikers that are sequences of any other simple or composite monikers. Most links can be expressed in a composite of one file moniker and one item moniker, i.e., a link to an embedded object (the item) in a container document (the file). The item name is only meaningful to the application that created it. That application will be asked later to return a pointer to the object identified by the item name...An example of a composite moniker might be one that contains a file (a spreadsheet) and an item moniker (a cell reference).

Editor's note: For the benefit of you word origin fans, a "moniker" (or "monica") was originally a nickname taken by a hobo (one of Jack London's was "Skysail Jack"). Later the term became used colloquially to mean any form of name for a person, including an alias, or his or her real name.

Analysis and Design Methods

SA:	Ternary and higher order relationship.

SA:	Associative object “To formalize a many-to-many relationship, create an associative object--a separate object [class or, strictly, typical unspecified instance)] that contains references to the identifiers of each of the participating instances.”

SA:	Assigner “When dealing with relationships for which there is a competition, we must first formalize the relationship in as associative object [See above in 9.6 Other] on the information model. Next we build a state model that is responsible for creating instances of the relationship by associating instances of the participating objects with one another.”

SD:	Architectural class: Finite State Model, Transition, Active Instance, Timer.

CA:	Message connection: “ an indication of processing dependency, indicating a need for services in order to fulfill responsibilities.” A message connection may be from one object to many objects.

RA:	Ternary Association

RA:	Association modeled as a class: “Sometimes it is useful to model an association as a class. Each link becomes one instance of the class. ... It is useful to model an association as a class when links can participate in associations with other objects or when links are subject to operations.”

JA:	Actor: “Models one, or several, roles that an interactor to the system can play. The interactor may be either human or machine.” “We regard an actor as a class and users as instances of this class. These instances exist only when the user does something to the system. The same person can thus appear as instances of several actors.”

JA:	Use Case: “A special sequence of transactions in a dialogue between a user and the system. Each use case is thus a specific way of using the system. A use case may have one basic course and several alternative courses.” A use case may be regarded as a class. “Each use case is a specific way of using the system and every execution of the use case may be viewed as an instance of the use case.”

JA:	Entity Object: “The entity object models information in the system that should be held for a longer time, and should typically survive a use case.

JA:	Interface Object: “The interface object models behavior and information that is dependent on the interface to the system. Thus everything concerning any interface of the system is placed in an interface object.”

JA:	Control Object: “The control objects model functionality that is not naturally tied to any other object. Typically such behavior ... consists of operating on several different entity objects, doing some computations and then returning the result to an interface object.”

JA:	Subsystem: “A subsystem groups several objects. ... Subsystems may include other subsystems.” “The task of subsystems is to package the objects so that the complexity is reduced.” “The aim is to have a strong functional coupling within a subsystem and a weak coupling between subsystems.”

JD:	Block: “The design model will be composed of blocks which are the design objects. These will make up the actual structure of the design model and show how the system is designed.” Blocks are implemented by one or several classes.

JD:	Object Module: “The module level of the programming language we denote by the generic term object module. ... In an object oriented language these ... will be the actual classes.”

WD:	Collaborator “Collaborations represent requests from a client to a server in fulfillment of a client responsibility. A collaboration is the embodiment of the contract between a client and a server.” “We say an object collaborates with another if, to fulfill a responsibility, it needs to send the other object any messages.” “It may take several collaborations to completely fulfill a single responsibility; on the other hand, some objects will fulfill a responsibility without collaborating with any other objects.”

WD:	Contract “A contract is the list of requests a client can make of a server. Both must fulfill the contract: the client by making only those requests the contract specifies, and the server by responding appropriately to those requests.” “The contract between client and server does not specify how things get done, only what gets done.”

WD:	Protocol “A protocol is the set of signatures to which a class will respond.”

WD:	Responsibility “A responsibility is something one object does for other objects, either performing some action or responding with some information.” Responsibilities are meant to convey a sense of the purpose of an object and its place in the system.” “The responsibilities of an object are all of the services it provides for all of the contracts it supports.”

WD:	Signature “A signature is the name of a method, the types of its parameters, and the type of the object that the method returns.”

MD:	Contract “The relationship between a class and its clients is viewed as a formal agreement, expressing each party’s rights and obligations.” See ‘assertion.’

MD:	Exception The occurrence of one of seven specified “abnormal condition during the execution of a software element.”

MD:	Failure “...[T]he inability of a software element to satisfy its purpose.” “A routine may either succeed or fail. It succeeds only if it fulfills its contract.” Failure occurs “if an exception occurs during [the] execution [of a routine] and the routine terminates ... by signaling an exception” to its caller. See the separate matrix row for Eiffel.

MD:	Error “...[T]he presence in the software of some element not satisfying its specification.”

EA:	Association “We use the is member of relationship set to form a set of objects which we wish to consider as a single object.” “The object class whose objects are sets is called the set class or the association class and the object class whose objects are members is called the member class or the universe. Association denotes that the members associate together to form an object.”

EA:	Exception “An exception is a system event or condition that is not part of normal system behavior.” Exceptions are modeled as distinguished paths in the state net model. Exceptions may be associated with a state, a trigger, or a state transition; they may refer to a constraint.

FA:	Ternary and higher relationship.

FA:	Invariant “An invariant is an assertion that some property must always hold.”

FA:	Role “The classes participating in relationships have roles. Each role can be named... Role names are useful when it is unclear in which order to read relationship names.”

FD:	Controller or interface objects “One distinguished role is that of the controller. The controller receives the request to invoke the system operation. The system operation is part of the method interface of the controller.” The controller is “responsible for responding to a system operation request.” “A design should have interface objects for each related set of operations at the subsystem interface.”

FD:	Collaborator “[T]he collaborators collaborate and cooperate with the controller to implement the system operation.”

FD:	Collection A collection is “a relevant subset of objects identified in the design process. ... The objects in a collection may change over time. Typical implementations of such collections will be lists or arrays.” ... “By default, when a message is sent to objects in a collection, all the objects in that collection receive the message.”

FD:	Reference “Each object must have a reference to another object to communicate with it. Another way of looking at this is to say that a server object must be visible to a client for the client to send a message to the server.” “For each relationship on the system object model, we expect that there is a path of visibility between the corresponding objects at design.”

FC:	Error: “... [T]he violation of a precondition.”

OA:	Control Condition “A control condition is a mechanism that, when triggered, permits it associated operation to begin only when its constraints are met.”

OA:	Event Type Event types are a kind of object type. “An event type is a type or classification of event.” Events are instances of the type.

OA:	Mapping “A mapping assign the objects of one type to objects of another type. ... A more formal definition of mapping (or function) is a process that maps one set into a powerset (or set of sets) of another.”

OA:	Trigger “A trigger invokes an operation when an event occurs. A trigger rule specifies that when a specific type of event occurs, a particular operation will be invoked.”

BD:	“Actor[:] An object that can operate upon other objects but is never operated upon by other objects; is come contexts, the terms active object and actor are interchangeable.”

BD:	“Server[:] An object that never operates on other objects; it is only operated on by other objects.”

BD:	“Agent[:] An object that can both operate upon other objects and be operated upon by other objects; an agent is usually created to do some work on behalf of an actor or other agent.

HA:	‘Scenarios’ (use cases) are used.

NA:	

�10.	Extensibility

OODBTG Reference Model

"Extensibility" allows additions and modifications to existing classes. There are several kinds of extensibility:

 o New classes may be defined, commonly based on existing classes.

 o Existing classes may be modified to add new operations, attributes, constraints, or implementations. This extends the protocol of the class.

 o Existing instances may acquire or lose a type (e.g. as when a "student" becomes an "employee").

The term "schema evolution" is used for operations that modify existing class definitions or the inheritance graph; the term "instance evolution" is used for the process of making existing instances consistent with modified class definitions.

OMG CORBA IDL

The CORBA Specification itself is extensible and there is a working group within OMG that is active in working on extensions to the specification.

ODMG

See under 8 Inheritance and Delegation for a discussion of subtyping in the model. New types can be defined as subtypes of existing types.

EXPRESS

This is not an issue for a conceptual modeling language.

Management Information Model

New managed object classes may be defined. These managed object classes may be subclasses of existing managed object classes. However, the definition of a managed object classes is not dynamic and each managed object class definition must be registered with a unique object identifier.

Managed object classes and other information associated with the information model is registered through the assignment of a globally unique identifier, known as an object identifier. An object identifier allows unique identification via a hierarchical identification authority structure, known as the object identifier tree or registration tree. Object identifiers are used in a management protocol to uniquely identify aspects of the information model. Once an object identifier is assigned, it cannot be reused.

SQL3

New tables and types (ADTs, row types, collection types, etc.) can be defined based on existing types. See also 2. Objects and 7. Types and Classes.

Existing types may be modified to add new operations, attributes, or constraints.

Existing instances may not acquire or lose type without creating a new instance and destroying the old one.

Matisse

The Matisse object model is extensible by the user. Schema evolution is supported, with the constraint that database consistency will be enforced by the object manager. This includes the metamodel which may be extended by the user.

Smalltalk

The underlying concepts and structure of the Smalltalk languages are minimalistic and the real capability of the language is delivered by the significant number of system and standard classes defined in all Smalltalk implementations. These classes, and thus “the language,” are infinitely extensible.

Eiffel

Classes can be defined in terms of other classes. See also entries under 8. Inheritance and Delegation and 9. Noteworthy Objects.

System Object Model

In SOM, all new classes are defined in terms of a previously existing SOM class. New methods can be added and old methods can be overridden. Methods can also be relocated upward in the hierarchy without requiring re-compilation of the application. Source code is not required for sub-classing since the binaries can be used for this purpose. This sub-classing from binaries even extends to languages other than the one the binaries were written in.

�10.1 Dynamic

ability to add new methods, classes, change attributes, change types; can you freeze (prevent extensions)?

OODBTG Reference Model

See entry under 10. Extensibility.

OMG CORBA IDL

CORBA objects can be accessed by using the Dynamic Invocation Interface (DII) to construct requests to objects at run time. The DII provides access to the ORB's Interface Repository which contains type information about objects. Clients access this information and use it to construct a request which can be invoked on an object at run time.

ODMG

Not specified.

EXPRESS

No dynamic extensibility, but static user-defined functions are allowed.

Open Distributed Processing

See entry under 7. Types and Classes.

Management Information Model

Not dynamic.

SQL3

Limited schema evolution is possible by applying the ALTER statement to a base table. Actions that can be taken using the ALTER statement include adding, altering, and dropping columns, and adding and dropping supertables, and table constraints. Data types can also be added and dropped.

Matisse

In Matisse, all extensibility is dynamic. It must be accomplished with the database live. Class schemas and the metamodel may be changed at the users convenience. The object manager will enforce consistency of data in the database and provide appropriate error messages if the user tries to do anything that will render data inconsistent.

Security restrictions normal prevent users from gratuitously changing schemas, particularly the metaschema. Nevertheless, in some applications it is important to be able to dynamically create, destroy, and update schemas, as well as object instances, even in multiuser environments. Matisse supports this.

Matisse maintains versions of all objects, including schemas. Users can see a consistent view of any historical state of the database.

Smalltalk

Typical implementations of Smalltalk are fully dynamic. See entries under 4. Polymorphism, 7. Types and Classes, and 10. Extensibility.

Eiffel

Dynamic extensibility is not supported in Eiffel.

Cecil

In Cecil, object extension declarations, in conjunction with field and method declarations, enable programmers to extend previously-existing objects. This ability can be important when reusing and integrating groups of objects implemented by other programmers. For example, predefined objects such as int, array, and closure are given additional behavior and ancestry through separate user code. Similarly, particular applications may need to add application-specific behavior to objects defined as part of other applications.

SELF

SELF provides primitives for dynamically adding and deleting slots (and thus operations and variables) from objects, and for dynamically changing parents (and thus inheritance).

System Object Model (SOM)

SOM is dynamic in that the class binaries can be replaced without having to re-compiled the application.

Analysis and Design Methods

SA:	No such concept.

CA:	No such concept.

RA:	No such concept.

JA:	The object model is modeled in its own terms, and therefore is, in principle, extensible.

WD:	No such concept.

MD:	The concepts class and object “belong to different worlds: the program text only contains classes; at run-time only objects exist. This is not the only possible approach. One of the subcultures of object-oriented programming, views classes as objects themselves.”

EA:	No such concept.

FA:	No such concept.

FD:	No such concept.

OA:	“A single framework model can be used to describe itself, as well as, the enterprise.” The model describes itself using a “kernel meta-model” which is a part of the model. “The only reason for inhibiting changes to the kernel meta-level is to maintain standardization.”

BD:	Dynamic extensibility is determined in accordance with the possibilities provided by the implementation language.

HA:	

NA:	

��10.2 Metaclasses/Metaobject Protocol

how extensible is the class system? can new semantics be added?

OODBTG Reference Model

Not addressed.

OMG CORBA IDL

CORBA does not define a meta-object or meta-class protocol.

ODMG

Not specified.

EXPRESS

EXPRESS currently has no notion of metaclass. It is likely that future versions of EXPRESS will support at least two, if not n, meta-levels.

Open Distributed Processing

Considered a property of the model generated for the Information Language. Meta - whatever are considered second order constraints in the Information Language.

Management Information Model

Not applicable.

SQL3

SQL3 has no notion of metaclass and its semantics are not extensible.

Matisse

Matisse supports the concepts of metaclass and metaobject protocol. [7]

C++

C++ has no built-in concept of metaclasses or a metaobject protocol. An example of an extended C++ providing metaobject protocol capabilities is described in [CM93].

Smalltalk

All classes are represented as an instance of a metaclass.

Eiffel

Not applicable.

SELF

Some of the basic behavior defined for all objects (e.g., how to clone and how to print) is defined in explicit objects to which other objects delegate messages to obtain this behavior. As a result, it is possible to imagine creating new versions of these basic objects, with variants of these sorts of basic behavior. It is possible that such things as the process of delegation, or how message sends are handled, could themselves be defined in explicit objects and hence be changeable. However, it is not clear from the references whether this is actually possible in SELF.

System Object Model (SOM)

In SOM all classes are real objects. SOM supports a class object which represents the metaclass for the creation of all SOM classes. The SOM metaclass defines the behavior common to all class objects. S ince it inherits from the root SOM object it exists at run time and contains the methods for manufacturing object instances. It also has the methods used to dynamically obtain information about a class and its methods at run time.

Analysis and Design Methods

SA:	No such concept.

CA:	No such concept.

RA:	No such concept.

JA:	No such concept.

WD:	No such concept.

MD:	No such concept.

EA:	No such concept.

FA:	No such concept.

FD:	No such concept.

OA:	Implementing metamodels is discussed briefly in terms of the possibilities provided by the implementation language.

BD:	In the context of Smalltalk and C++, ‘metaclass’ is used to refer to the place where features of the class (as opposed to those of instances) are found (e.g. Smalltalk ‘class variables’ and ‘class methods’ and C++ ‘static members.’) In the context of CLOS, ‘metaclass’ is used to refer to the place where the semantics of the class may be dynamically changed (e.g. dynamic redefinition of methods or dispatching algorithms).

HA:	

NA:	

�10.3 Introspection

definitional aspects of instances; access to definitions (e.g., type/class objects) at run time)

�OODBTG Reference Model

Not addressed except implicitly as a requirement for schema or instance evolution to occur.

OMG Core Object Model

4.2.3 Object Types

 ...

Although the Core defines types and operations as concepts, systems that comply to the model need not provide objects that correspond to these concepts. Types and operations as objects will be considered for inclusion in the Meta_data component of the OMG OM Components Guide.

Editor's note: the OMG OM Components Guide exists in draft form only.

ODMG

Type "Type" is a subtype and an instance of type Atomic_object. The meta-data can be accessed using the interface for type instances, and can be queried using the standard query language.

EXPRESS

This is essentially not considered by EXPRESS, although some of the builtin functions provide string-based representations of some meta-level information on an ad-hoc basis. It is likely that future versions of EXPRESS will address the issue more fully.

Open Distributed Processing

Not a concept required or considered for ODP due the strong general notions of encapsulation.

But, every object instance is associated with an object type which in turn has a predicate.

Editor's note: I believe there is some misunderstanding here, since the ODP Trader function appears to involve providing some form of access to descriptive information at run time in order to match client service requirements with service offerings. Perhaps the Trader is not required to actually allow the client to read the descriptions of service offerings.

Management Information Model

Scoping allows multiple managed objects to be selected so that multiple identical operations can be performed on all of them. Scoping allows a subset of the objects in a Management Information Tree of an open system to be selected for the application of a specified operation.

Filters allow for the specification of criteria that managed objects must meet in order to have a management operation performed. A filter is an assertion about the presence or value of an attribute in a managed object and is satisfied if, and only if, the assertion evaluates to TRUE. The selection criteria is a set of one or more assertions about the presence of attributes, or the values of attributes in a managed object.

Also, [ISO/IEC CD 10164-16, MKMF] defines managed object classes for representing schema information (e.g., managed object classes supported, managed object class definitions and their associated characteristics).

SQL3

Some metadata is maintained in SQL3 tables (this is a requirement of SQL92) and can be read by the user.

Matisse

All objects in Matisse have a unique immutable identifier and know what type they are. This includes metaclasses, class schemas, and object instances.

C++

A C++ class is a compile-time entity which defines the form of all objects (instances) of the class. Classes have no explicit representation as objects at run time. A run time type information (RTTI) facility recently added to the C++ standard provides some support for introspection. This facility defines a typeid operator which, given an expression as an argument, returns a reference to a system-maintained object of type Type_info corresponding to the type of the argument. A Type_info object can be compared with another Type_info object to determine type equality or inequality, and its name member function can be called to access the type's name. However, there are limitations on the use of Type_info objects (e.g., they cannot be passed as function arguments), so they are not fully equivalent to run time class objects.

Smalltalk

Typically Smalltalk implementations offer complete introspection.

Eiffel

Limited introspection is available through class operations. Class ANY introduces a small number of operations to find the base class of an object and other similar information.

Most vendors supply one or more library classes to provide further facilities for object introspection such as finding the number and types of fields within an object and also manipulating those fields.

Emerald

Each Emerald abstract type is an object, and can thus be manipulated by the ordinary facilities of the language, such as assignment, constant binding, and parameter passing. Type objects may be passed as parameters to implement polymorphism or inspected at run-time to implement run-time type checking.

Any object that exports a getSignature operation that returns a Signature is an abstract type. Objects of type Signature are created by the type constructor syntax (type x ... end x). A Signature is a built-in implementation of an AbstractType that can be generated only the compiler. A signature object exports a getSignature operation (returning itself) so it conforms to AbstractType. It also exports several secret operations that enable the Emerald implementation to determine the operations provided by the type, and the signatures of those operations. Because the names of these operations are secret, no programmer-defined objects will ever have types that conform to Signature; all signature objects must stem from a type constructor expression in some Emerald program. Consequently, the type checker is guaranteed to be able to get adequate and consistent information about a type. [RTLB+91]

SELF

SELF has no type or class objects. It might be possible to infer description information from access to instances, but it is not clear from the references whether this can be done in SELF.

System Object Model (SOM)

See entry under 10.2 Metaclasses/Metaobject Protocol.

Analysis and Design Methods

SA:	No such concept.

CA:	No such concept.

RA:	No such concept.

JA:	No such concept.

WD:	No such concept.

MD:	See the matrix entries for Eiffel.

EA:	No such concept.

FA:	No such concept.

FD:	No such concept.

OA:	No such concept.

BD:	“[R]untime type identification” is determined in accordance with the possibilities provided by the implementation language.

HA:	

NA:	

�11.	Object Languages

OODBTG Reference Model

Closely related to an object model is a language, referred to as an "Object Language" ("OL"): it can be used to specify general programming operations. In other cases, it may be restricted, e.g. to a query language. An OL may or may not be an existing programming language (which may also support non-object-oriented programming).

OMG CORBA IDL

CORBA supports a C language mapping. Future mappings are expected to include C++, Smalltalk and COBOL.

ODMG

ODMG specifies an object definition language (ODL) that supports the ODMG object model and is compatible with OMG's IDL. The ODL is programming language independent. C++ and Smalltalk ODL bindings are defined in [ODMG, 1994].

ODMG also specifies an SQL-like object query language (OQL) that provides declarative access to objects. Queries can be posed to any denotable object, starting with an object name or with a language expression yielding the object. For example, (from [ODMG, 1994])

	select distinct x.age

	from x in Persons

	where x.name = "Pat"

queries over the set named Persons (in this case, the extent of type Person).

The nested query in

	select distinct struct(name: x.name, hps: (select y

		from y in x.subordinates

		where y.salary > 100000)

	from x in Employees

queries over the result of the query (path) expression x.subordinates.

The full OQL syntax is not currently supported by either the C++ or the Smalltalk binding.

EXPRESS

EXPRESS itself provides no manipulation language. Within STEP, there is work on the Standard Data Access Interface (ISO CD-10303:22), a procedural interface to instances of EXPRESS models.

Open Distributed Processing

RM-ODP Part 3 - The Prescriptive Model prescribes five conceptual languages corresponding to the five ODP Viewpoints:

Enterprise Viewpoint		Enterprise Language

Information Viewpoint	Information Language

Computational Viewpoint	Computational Language

Engineering Viewpoint	Engineering Language

Technology Viewpoint	Technology Language

All five languages strongly adopt notions of the object paradigm.

It is likely that concrete programming languages for at least the Computational and Engineering Language will evolve. It is also likely that "Z" (pronounced ZED) will be applied to the Information Viewpoint.

Management Information Model

An information model is described using the template notation defined in [ISO/IEC 10165-4, GDMO]. Guidelines for the Definition of Managed Object (GDMO) templates provide a formal representation for the definitions of the managed object classes. Additionally, to re-use the descriptions of certain characteristics of managed object classes, additional templates are defined for packages, behaviors, attributes, attribute groups, actions, notifications, name bindings, and parameters. Complete details of the template definitions, including a description of the syntactical conventions, may be found in [ISO/IEC 10165-4, GDMO]. Templates may reference ASN.1 definitions [CCITT X.208, ASN.1].

SQL3

A number of new statement types have been added in SQL3 in order to make SQL computationally-complete enough so that object behavior can be completely specified in SQL. Some of the additional statements provided for writing SQL functions include:

•	An assignment statement that allows the result of an SQL value expression to be assigned to a free standing local variable, a column, or an attribute of an ADT.

•	A CALL statement that allows invocation of an SQL procedure.

•	A RETURN statement that allows the result of an SQL value expression to be returned as the RETURNS value of the SQL function.

•	A CASE statement to allow selection of an execution path based on alternative choices.

•	An IF statement with THEN, ELSE, and ELSEIF alternatives to allow selection of an execution path based on the truth value of one or more conditions.

•	Statements for LOOP, WHILE, and REPEAT to allow repeated execution of a block of SQL statements. WHILE checks a <search condition> before execution of the block, and REPEAT checks it afterwards. All three statements are allowed to have a statement label.

Additional control facilities available include compound statements and exception handling. A compound statement is a statement that allows a collection of SQL statements to be grouped together into a "block". A compound statement may declare its own local variables and specify exception handling for an exception that occurs during execution of any statement in the group. For exception handling, a CONDITION declaration establishes a one-to-one correspondence between an SQLSTATE error condition and a user-defined exception name. HANDLER declarations associate user-defined exception handlers with specific exceptions.

The SQL92 standard defines language bindings for a number of standard languages. A key aspect of the individual language bindings is the definitions of correspondences between SQL data types and host language data types. In some cases, these are relatively straightforward; e.g., the SQL CHARACTER data type maps to a C char. In other cases, the mapping is not so straightforward. For example, SQL92 has a TIMESTAMP data type, but standard programming languages do not contain a corresponding built-in type. In these cases, SQL requires the use of a CAST function to convert database TIMESTAMP data to character data in the program, and vice-versa [MS93]. In SQL92, these type correspondences are defined only at the level of elementary scalar data types. There are no type correspondences defined for structured types, e.g., between a row of an SQL table and a flat record or structure in a programming language (although some such correspondences would be relatively straightforward to define).

There are currently no bindings defined between the SQL3 ADT extensions (or rows containing them) and object classes or types in object-oriented programming languages such as C++ or Smalltalk, although these are under investigation.

Matisse

The next release of Matisse with support ANSI SQL92 with object extensions. The evolving SQL3 specification will be fully supported as it stabilizes.

The Matisse API is a set of C library functions that can be bound into any language that supports an external C function call. The API supports all features of the database. Thus any language can bind to Matisse.

Smalltalk

Smalltalk is a pure object-oriented programming language with its own self-contained development environment.

Eiffel

Eiffel is the object language itself.

System Object Model (SOM)

SOM is designed to work with a variety of programming languages. SOM supports an interface definition language to define interfaces and data. The IDL is then compiled (pre-compiler) and linked with the application. This does not preclude the use of a languages' object model in the same application.

The use of SOM with a procedural language provides that language with object oriented capabilities.

OLE Component Object Model

The Component Object Model specifies a programming-language-independent binary standard for object implementations (i.e., it specifies what the implementation of the objects has to look like). Any object conforming to this standard is a legitimate Windows Object, no matter what language is used to implement it.

Analysis and Design Methods

SA:	N/A

CA:	N/A

RA:	N/A

JA:	N/A

WA:	N/A

MD:	The language used is Eiffel; See the matrix entries for Eiffel.

EA:	An “appendix formally defines [the object model]. In particular, if formally defines what it means for a model instance to be a valid ... model instance. As part of the formal definition, we give a ... meta-model in terms of Object-Relationship-Model diagrams.” “In our approach to formally defining valid ... model instances, we begin by providing a mapping from an Object-Relationship-Model instance to a first-order language and a set of first-order rules. We then map the first-order language to a mathematical model instance consisting of a universe of objects, a set of relations, a set of constants, and a set of functions. Using this latter mapping, we can check the validity of the mathematical model instance by ascertaining the truth of the rules. If all the rules hold, the ... instance is valid.” “To formally define ... model instances, we then use the meta-model... All valid mathematical model instances for the ... meta-model are valid model instances.”

FA:	“To have a guarantee of consistency requires that it be possible to semantically check the models fully. This is not possible without the use of a formal specification language, such as Vienna Development Method [sic] VDM or Z, Unfortunately these techniques are only practical in safety critical and other systems where defects must be avoided at all costs. ... the semantics of the object models are defined, but only informally.”

OA:	N/A

OD:	N/A

BD:	N/A

HA:	

NA:	“This appendix [A] presents a formal syntax specification of the BON textual notation...” “Nothing can compensate for the precision of a formal notation when it comes to communicating the difficult cases unambiguously.”

�12.	Semantics of Base Classes (+ type constructors)

OODBTG Reference Model

Not addressed.

OMG CORBA IDL

CORBA defines "interfaces". Interfaces are equivalent to classes. An interface can be derived in terms of another interface. A derived interface may declare new elements. In addition, the elements of a base interface (parent interface) can be referred to as if they were elements of the derived interface. A derived interface may redefine any of the type, constant, and exception names which have been inherited.

An interface may be derived from any number of base interfaces (multiple inheritance). Reference to base interface elements must be unambiguous. It is illegal to inherit from two interfaces with the same operation or attribute name.

EXPRESS

Not addressed.

Open Distributed Processing

Described by the objects behavior

Management Information Model

Not applicable.

SQL3

See 7. Types and Classes.

Matisse

The semantics of Matisse classes are specified by the metamodel. The dynamic features of Matisse allow the user to modify the metamodel and mold the semantics of the database to application requirements.

Smalltalk

Smalltalk has a few built-in classes and typical mechanisms for defining new classes.

Eiffel

Not Applicable

Cecil

In addition to its built-in types and ordinary mechanisms for defining types, Cecil includes several special type constructors. One of these is the type of a closure taking N arguments. Closure types are related by implicit subtyping rules that reflect standard contravariant subtyping. Cecil also supports type constructors forming the least upper bound and greatest lower bound of two other types in the type lattice.

System Object Model (SOM)

See entry under 10.2 Metaclasses/Metaobject Protocol.

Analysis and Design Methods

SA:	N/A

CA:	N/A

RA:	N/A

JA:	N/A

MD:	See the matrix entries for Eiffel.

EA:	N/A

FA:	“Attributes assume values from types such as integers, booleans, text, and enumerations.” These are not further defined.

OA:	N/A

BD:	The author provides extensive examples in C++, using the base types of that language.

HA:	

NA:	N/A

�13.	Background and References

OODBTG Reference Model

X3/SPARC/DBSSG/OODB Task Group was commissioned in 1989 to characterize OODB systems and determine a roadmap for standards in the OODB area. Its final report was completed in September, 1991. As part of its reference model characterizing OODBs, a stand alone section was written that defines "General Characteristics of Object Models." Material from this chapter is included in this features matrix.

The document reference is:

"General Characteristics of Object Models," section 3.2 in: Bill Kent, Allen Otis, Craig Thompson (editors), "Object Data Management Reference Model", section 3 in: Elizabeth Fong, William Kent, Ken Moore, and Craig Thompson (editors). "X3/SPARC/DBSSG/OODBTG Final Report," 17 September, 1991. Available from NIST (Elizabeth Fong at FONG@ECF.NCSL.NIST.GOV)

OMG Core Object Model

This text comes from chapter 4 of Richard Mark Soley, Ph.D. (ed.), Object Management Architecture Guide, Revision 2.0, Second Edition, OMG TC Document 92.11.1, Object Management Group, September 1, 1992.

OMG CORBA IDL

[CORBA Specification} The Common Object Request Broker: Architecture and Specification, Revision 1.1. Object Management Group, 1992.

ODMG

The Object Database Management Group (ODMG) was initiated in late 1991 to address the belief that lack of standards for object databases has hindered their acceptance. The group wanted to progress quickly, thus they kept themselves small (originally 5 voting members) and insisted that members represent their companies as individuals; substitute representatives are not allowed. Release 1.0 of the standard was published a little over a year later in 1993.

As of February 1994, the group has seven voting member companies and a number of reviewer companies. The voting member companies and most of the reviewer member companies have committed to supporting the standard by 1995.

[Cat94] R.G.G. Cattell, editor, The Object Database Standard: ODMG-93, Release 1.1, Morgan Kaufmann Publishers, San Francisco, 1994.

Information about the ODMG can be obtained by mail to info@odmg.org; questions can be addressed to question@odmg.org.

EXPRESS

EXPRESS is a conceptual schema language. It is defined specifically to deal with the information that is consumed or produced during product manufacturing. EXPRESS is not a programming language. It does not contain language elements which allow input/output, information processing or exception handling. EXPRESS focuses on the definition of entities consisting of data and behavior. Data represents the properties by which an entity is realized and behavior is represented by constraints and operations.

References

ISO/DIS 10303-11 Industrial automation systems and integration -

 Product data representation and exchange -

 Part 11: Description methods: The EXPRESS

 language reference manual, July 15, 1992.

(or, ISO 10303-11, date: to be published. The IS ballot has completed;

final editing of the Standard is in process.)

ISO/CD 10303-22 Industrial automation systems and integration -

 Product data representation and exchange -

 Part 22: Implementation methods: Standard

 data access interface specification, November 1, 1993.

Open Distributed Processing

ODP or Open Distributed Processing and specifically the Reference Model for ODP (RM-ODP) contains its own model for objects to support the ODP concepts.

References:

[Part 1] ISO/IEC 10746-1. Information Technology - Open Distributed Processing - Basic Reference Model of Open Distributed Processing - Part 1: Overview and Guide to Use. (ISO/IEC JTC1/SC21 N 7053, September 1992).

[Part 2] ISO/IEC JTC1/SC21/WG7, Basic Reference Model of Open Distributed Processing - Part 2: Descriptive Model. (CD 10746-2.3, June 1993).

[Part 3] ISO/IEC 10746-3. Information Technology - Open Distributed Processing - Basic Reference Model of Open Distributed Processing - Part 3: Prescriptive Model. (ISO/IEC JTC1/SC21 N 7055, September 1992).

[Part 4] ISO/IEC 10746-5. Information Technology - Open Distributed Processing - Basic Reference Model of Open Distributed Processing - Part 4: Architectural Semantics. (ISO/IEC JTC1/SC21 N 7056, September 1992).

Management Information Model

References:

NOTE: Most of the text is abstracted from [ISO/IEC 10165-1, MIM] and [ISO/IEC CD 10165-7, GRM].

[CCITT X.208, ASN.1] CCITT Recommendation X.208 (1989) | ISO/IEC 8824 : 1990, Information Technology - Open Systems Interconnection -Specification of Abstract Syntax Notation One (ASN.1).

[CCITT X.209, BER] CCITT Recommendation X.208 (1989) | ISO/IEC 8824 : 1990, Information Technology - Open Systems Interconnection -Specification of Basic Encoding Rules For Abstract Syntax Notation One (ASN.1).

[ISO/IEC 9595] ISO/IEC 9595, Information Technology - Open Systems Interconnection - Common Management Information Service Definition.

[ISO/IEC 9596-1] ISO/IEC 9596-1, Information Technology - Open Systems Interconnection - Common Management Information Protocol: Specification.

[ISO/IEC 10040, SMO] CCITT Recommendation X.701 (1992) | ISO/IEC 10040 : 1992, Information Technology - Open Systems Interconnection - Systems Management Overview.

[ISO/IEC 10164-2] CCITT Recommendation X.731 | ISO/IEC 10164-2, Information Technology - Open Systems Interconnection - Systems Management - Part 2: State Management Function.

[ISO/IEC CD 10164-16, MKMF] CCITT Draft Recommendation X.xxx | ISO/IEC CD10164-16, Information Technology - Open Systems Interconnection - Systems Management - Part 16: Management Knowledge Management Function.

[Part 1] or [ISO/IEC 10165-1, MIM] CCITT Recommendation X.720 (1991) | ISO/IEC 10165-1 : 1991, Information Technology - Open Systems Interconnection - Structure of Management Information - Part 1: Management Information Model.

[Part 4] or [ISO/IEC 10165-4, GDMO] CCITT Recommendation X.722 (1992) | ISO/IEC 10165-4 : 1992, Information Technology - Open Systems Interconnection - Structure of Information - Part 4: Guidelines for the Definition of Managed Objects.

[GRM 93] or [ISO/IEC CD 10165-7, GRM] CCITT Draft Recommendation X.xxx | ISO/IEC CD 10165-7, Information Technology - Open Systems Interconnection - Structure of Management Information - Part 7: General Relationship Model

[X3T5/93-324] ANSI X3T5. US Comments on ISO/IEC CD 10165-7.2 General Relationship Model. (Authors: Haim Kilov, Laura S. Redmann).X3T5/93-324, December 3, 1993.

[SMI Rapporteur Group 93] ISO/IEC JTC1/SC21. Open Systems Interconnection, Data Management and Open Distributed Processing. Liaison Statement to ITU-TS SG7 on FDT Use of Specifying Managed Object Behavior. ISO/IEC JTC1/SC21 N 7981. August 9, 1993.

SQL3

[Gal92] Leonard Gallagher, "Object SQL: Language Extensions for Object Data Management", Proc. Intl. Conf. on Knowledge and Information Mgmt. (CIKM-92), Baltimore, MD, November 1992.

 ftp://speckle.ncsl.nist.gov/isowg3/dbl/BASEdocs/descriptions/sql3overview.txt

[ISO96a] ISO/IEC JTC1/SC21 N10489, ISO//IEC 9075, Part 2, Committee Draft (CD), Database Language SQL —Part 2: SQL/Foundation, July 1996.

ftp://speckle.ncsl.nist.gov/isowg3/dbl/BASEdocs/cd-found.pdf

[ISO96b] ISO/IEC JTC1/SC21 N10491, ISO//IEC 9075, Part 8, Committee Draft (CD), Database Language SQL —Part 8: SQL/Object, July 1996. ftp://speckle.ncsl.nist.gov/isowg3/dbl/BASEdocs/cd-objct.pdf

[KCDM+95] Krishna Kultarni, Mike Carey, Linda DeMichiel, Nelson Mattos, Wei Hong, and Mike Ubell, "Introducing Reference Types and Cleaning Up SQL3’s Object Model", SQL3 Change Proposal X3H2-95-456, November 26, 1995.

[KCS94] William Kelley, Amelia Carlson, Phil Shaw, personal communication, August 1994.

[Kul93] Krishna G. Kulkarni, "Object-Orientation and the SQL Standard", Computer Standards & Interfaces 15 (1993), 287-300.

[Mat96] Nelson Mattos, “An Overview of the SQL3 Standard”, presentation foils, Database Technology Institute, IBM Santa Teresa Lab., San Jose, CA, July 1996, ftp://speckle.ncsl.nist.gov/isowg3/dbl/BASEdocs/descriptions/SQL3_foils.ps.

[MS93] Jim Melton and Alan R. Simon, Understanding the New SQL: A Complete Guide, Morgan Kaufmann, San Francisco, 1993.

Matisse

[1]	Atkinson, M. et al. The Object-Oriented Database Systems Manifesto. In 	Deductive and Object-Oriented Databases. Elsevier Science Publishers, 1990.

[2]	Committee for Advanced DBMS Function (Stonebraker, M., et al.). Third 	Generation Database System Manifesto. ACM SIGMOD Record, Sep 1990.

[3]	Tischritzis, Dennis, Klug, Anthony . The ANSI/X3/SPARC DBMS Framework 	Report of the Study Group on Database Management. Information Systems 	3:173-191, 1978.

[4]	LeLong, Philippe, Moller, Pierre. MATISSE Product Overview. Intellitic 	International, Inc. 1993.

[5]	Sutherland, Jeff. Dialogue on Objects and SQL3, Meeting Notes, 14-16 April 	1993, Palo Alto, CA. X3H7-93-057.

[6]	Khoshafian, Setrag N., Copeland, George P. Object Identity. In Readings In 	Object-Oriented Database Systems. Zdonik, S.B., Maier, D. (Eds.) San Mateo, 	Morgan Kaufmann, 1990.

[7]	Kiczales, G., des Rivieres, J., and Bobrow, D. The Art of the Metaobject 	Protocol. Cambridge: MIT Press, 1991.

�C++

[Cli93] Marshall Cline, Frequently-Asked-Questions for comp.lang.c++, September, 1993.

[Cook90] Stephen Cook, "Programming Languages Based on Objects", in G. Blair, J. Gallagher, D. Hutchison, and D. Shepherd (eds.), Object-Oriented Languages, Systems, and Applications, unpublished manuscript, 1990.

[CM93] S. Chiba and T. Masuda, "Designing an Extensible Distributed Language with a Meta-Level Architecture", in O. Nierstrasz, ed., Proceedings ECOOP '93, Lecture Notes in Computer Science 707, Springer-Verlag, July 1993, 483-502.

[Ste94] A. Stevens, "Patterns, New C++ Features, and OS/2", Dr. Dobb's Journal, Sept. 1994, 107-111.

[Str92] Bjarne Stroustrup, The C++ Programming Language, Second Edition, Addison-Wesley, 1992.

[Wes90] Dan Weston, Elements of C++ Macintosh Programming, Addison-Wesley, 1990.

OOCOBOL

[Obi94] Document X3J4/94-0191 (X3H7-94-10), Object Orientation, Raymond Obin, 22 February, 1994.

[Top94] Andrew Topper, "Object-Oriented COBOL Standard", Object Magazine 3(6), February 1994, 39-41.

Smalltalk

[GR83] Adele Goldberg and D. Robson, Smalltalk-80: The Language and Its Implementation, Addison-Wesley, 1983.

[IBM92] Smalltalk Portability: A Common Base, Document Number GG24-3903, IBM Corporation, International Technical Support Center, Boca Raton, September 1992.

Eiffel

1.	Meyer, Bertrand, Eiffel: The Language (Reprinted with corrections),

	Prentice-Hall Object-oriented Series, 1992.

2.	Meyer, Bertrand, Object-oriented Software Construction, Prentice-Hall,

	1988.

3.	Meyer, Bertrand, Reusable Software: The Base Object-Oriented

	Component Libraries, 1994, Prentice-Hall Object-Oriented Series.

Emerald

Emerald is not a particularly widely-used programming language. However, many concepts associated with Emerald, such as conformity, have had considerable influence in object-oriented language and system designs.

[BHJL86] A. Black, N. Hutchinson, E. Jul, and H. Levy, "Object Structure in the Emerald System", in N. Meyrowitz, ed., OOPSLA '86 Conference Proceedings, ACM, Sept., 1986, published as SIGPLAN Notices, 21(11), Nov., 1986.

[BH90] A. Black and N. Hutchinson, "Typechecking Polymorphism in Emerald", Technical Report CRL 91/1, Cambridge Research Laboratory, Digital Equipment Corporation, 7 December 1990.

[Hoa74] C. A. R. Hoare, "Monitors: An Operating System Structuring Concept", Comm. ACM 17, 10 (October 1974), 549-57.

[RTLB+91] R. K. Raj, E. Tempero, H. M. Levy, A. P. Black, N. C. Hutchinson, and E. Jul, "Emerald: A General-Purpose Programming Language", Software--Practice and Experience 21(1), January 1991.

Cecil

[Cha92] C. Chambers,`"Object-Oriented Multi-Methods in Cecil", Proc. ECOOP '92.

[Cha93] C. Chambers, "The Cecil Language: Specification and Rationale", Technical Report 93-03-05, University of Washington, March 1993.

SELF

[US87] and [CUL89] are basic references on SELF. [CMC92] describes the design variants found in prototype-based languages in general, including SELF, and discusses the semantic differences between object models based on classes and those based on prototypes. .

[CMC92] Christophe Dony, Jacques Malenfant, and Pierre Cointe, "Prototype-Based Languages: From a New Taxonomy to Constructive Proposals and Their Validation", in A. Paepcke, ed., OOPSLA '92 Conference Proceedings, ACM, Oct., 1992, published as SIGPLAN Notices, 27(10), Oct., 1992.

[CUL89] Craig Chambers, David Ungar, and Elgin Lee, "An Efficient Implementation of SELF, a Dynamically-Typed Object-Oriented Language Based on Prototypes", in N. Meyrowitz, ed., OOPSLA '89 Conference Proceedings, ACM, Oct., 1989, published as SIGPLAN Notices, 24(10), Oct., 1989.

[US87] D. Ungar and R. B. Smith, "Self: The Power of Simplicity", in N. Meyrowitz, ed., OOPSLA '87 Conference Proceedings, ACM, Oct., 1987, published as SIGPLAN Notices, 22(12), Dec., 1987.

System Object Model (SOM)

[CS92] N. Coskun and R. Sessions, "Class Objects in SOM", IBM Personal Systems Developer (Summer 1992): 67-77.

[SC92] R. Sessions and N. Coskun, "Object-Oriented Programming in OS/2 2.0", IBM Personal Systems Developer (Winter 1992): 107-120.

[OH92] R. Orfali and D. Harkey, Client/Server Programming with OS/2 2.0, 2nd. ed., Van Nostrand Reinhold, New York, 1992.

SOMobjects Developer Toolkit Publications Version 2.0 - IBM Order No. 96F8649

Notes: "SOMobjects" is a registered trademark of IBM.

OLE Component Object Model

[Bro94a] K. Brockschmidt, Inside OLE 2, Microsoft Press, Redmond, 1994.

[Bro94b] K. Brockschmidt, "OLE 2.0 Part I: Windows Objects and the Component Object Model", Microsoft Systems Journal, Aug. 1993.

[Bro94c] K. Brockschmidt, "OLE 2.0 Part II: Implementing a Simple Windows Object Using Either C or C++", Microsoft Systems Journal, Sept. 1993.

Analysis and Design Methods

BD:

Grady Booch, Object-Oriented Analysis and Design with Applications�-Second Edition, Redwood City, California: Benjamin/Cummings, 1994.

CA:

Peter Coad and Edward Yourdon, Object-Oriented Analysis--Second Edition, Englewood Cliffs: Prentice Hall, 1991.

CD:

Peter Coad and Edward Yourdon, Object-Oriented Design, Englewood Cliffs: Prentice Hall, 1991.

EA:

David W. Embly, Harry D. Kurtz, and Scott N. Woodfield, Object-Oriented Systems Analysis, Englewood Cliffs: Prentice-Hall, 1992.

FA, FD, FC:

Derek Coleman, Patrick Arnold, Stephanie Bodoff, Chris Dollin, Helena Gilchrist, Fiona Hayes, and Paul Jeremaes, Object-Oriented Development, Englewood Cliffs: Prentice-Hall, 1994 [sic, though published in 1993].

HA:

Brian Henderson-Sellers and J. M. Edwards, Book Two of Object-Oriented Knowledge: The Working Object, Sydney: Prentice-Hall, 1994.

JA, JD:

Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and Gunnar Övergaard, Object-Oriented Software Engineering--A Use Case Driven Approach, Reading, Massachusetts: Addison-Wesley (“ACM Press”), 1992

MD, MC:

Bertrand Meyer, Object-oriented Software Construction, Englewood Cliffs: Prentice Hall, 1988.

NA:

Kim Waldén and Jean-Marc Nerson, Seamless Object-Oriented Software Construction—Analysis and Design of Reliable Systems, Hemel Hempstead, Hertfordshire: Prentice Hall, 1995

OA:

James Martin, and James J. Odell, Object-oriented Methods--A Foundation, Englewood Cliffs: Prentice Hall, 1995.

RA, RD, RC:

James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and William Lorensen, Object-Oriented Modeling and Design, Englewood Cliffs: Prentice Hall, 1991.

SA:

Sally Shlaer and Steven J. Mellor, Object-Oriented Systems Analysis--Modeling the World in Data, Englewood Cliffs: Prentice Hall, 1988.

Sally Shlaer and Steven J. Mellor, Object Life Cycles--Modeling the World in States, Englewood Cliffs: Prentice Hall, 1992.

SD:

Sally Shlaer and Stephen J. Mellor, Object Life Cycles--Modeling the World in States, Englewood Cliffs: Prentice Hall, 1992.

Sally Shlaer and Stephen J. Mellor, “Real Time Recursive Design,” Berkeley: Project Technology, 1992.

WD:

Rebecca Wirfs-Brock, Brian Wilkerson, and Lauren Wiener, Designing Object-Oriented Software, Englewood Cliffs: Prentice Hall, 1991.

Other

[Man89] F. Manola, "Object Model Capabilities for Distributed Object Management", TM-0149-06-89-165, GTE Laboratories Incorporated, June 30, 1989.

[RBPE+91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, Object-Oriented Modeling and Design, Prentice-Hall, 1991.

�PAGE �

�PAGE �1�

0.	Intended Use

�PAGE �

�PAGE �7�

1.	Basic Concepts

�PAGE �

�PAGE �15�

2.	Objects

�PAGE �

�PAGE �21�

2.1	operations

�PAGE �

�PAGE �29�

2.2	requests

�PAGE �

�PAGE �33�

2.3	messages

�PAGE �

�PAGE �36�

2.4	specification of behavioral semantics

�PAGE �

�PAGE �45�

2.5	methods

�PAGE �

�PAGE �49�

2.6	state

�PAGE �

�PAGE �54�

2.7	object lifetime

�PAGE �

�PAGE �60�

2.8	behavior/state grouping

�PAGE �

�PAGE �63�

2.9	communication model

�PAGE �

�PAGE �68�

2.10	events

�PAGE �

�PAGE �70�

2.11	transition rules

3.	Binding

�PAGE �

�PAGE �74�

4.	Polymorphism

�PAGE �

�PAGE �79�

5.	Encapsulation

�PAGE �

�PAGE �86�

6.	Identity, Equality, Copy

�PAGE �

�PAGE �94�

7.	Types and Classes

�PAGE �

�PAGE �113�

8.	Inheritance and Delegation

�PAGE �

�PAGE �125�

9.	Noteworthy Objects

�PAGE �

�PAGE �128�

9.1	relationships

�PAGE �

�PAGE �133�

9.2	attributes

�PAGE �

�PAGE �136�

9.3	literals

�PAGE �

�PAGE �141�

9.4	containment

�PAGE �

�PAGE �145�

9.5	aggregates

�PAGE �

�PAGE �148�

9.6	other

�PAGE �

�PAGE �151�

10.	Extensibility

�PAGE �

�PAGE �156�

10.1	Dynamic

�PAGE �

�PAGE �158�

10.2 	Metaclasses/Metaobject Protocol

�PAGE �

�PAGE �160�

10.3 	Introspection

�PAGE �

�PAGE �163�

11.	Object Languages

�PAGE �

�PAGE �166�

12.	Semantics of Base Classes (+ type constructors)

�PAGE �

�PAGE �169�

13.	Background and References

�PAGE �

�PAGE �176�

