Interoperability and Transparency Perspectives for Component Based Software: Position Paper�

Janis R. Putman

MITRE Corporation, Bedford, MA

e-mail: jputman@mitre.org

Perspectives

Interoperability involves the exchanges of messages between system components in an agreed upon manner. Distribution transparency in the seamless manipulation and decision support of information is a further goal. The enablers of standard interfaces and reuse of common software components are necessary but not sufficient for interoperability. Distributed systems composition to realize interoperability and transparency is complex and in need of focused software engineering and new perspectives of system interoperability:

Interoperable architectures must be considered: interoperability can only be achieved with composable heterogeneous architectures [1].

General interoperability between system components that hides the details (transparent) of the mechanisms may be impossible to achieve with the current technologies and approaches.

Technologies to support interoperability within a domain are a subset of technologies needed to support interoperability across domains.

Neither technology nor the research community at large has solved the transparent� general interoperability problem, although one can point to achieved interoperability in the specific case. Current practices used to enable a degree of interoperability include: common operating environments, standards on the interfaces, common interfaces, or common architectures. Because systems evolve for a variety of reasons, interoperability must be considered from the perspective of heterogeneous, the system engineering approaches to use to enable interoperability across the system, and distribution transparency (i.e., hiding the details of an interaction or state). Use of various forms of distribution transparency minimizes the need for bilateral knowledge between two components. Transparent interaction between components results in less specific code development for an interface, less impact on the application, and more robust requirements on the infrastructure of the system.

The typical distributed processing objective of distribution transparency requires that solutions for interoperability be generic and not bilaterally specific. Thus for interoperability to be realized, system engineering must address: software components and connectors, component platform (or local support service) components and connectors, distributed component service components and connectors, (e.g., middleware brokers), component software architecture, service component software architecture, distribution transparency across the interfaces, interoperability considerations of interface, behavior, and naming, and two concepts for interoperability across a software component based systems. There are two foci to be addressed: technologies to support interoperability within a domain; and an enhanced set of technologies to support interoperability across domains.

What is needed in the architecture for Interoperability

Premise

The system architecture must include metadata about the system architectural styles, the ability for the architectural styles to be composed, services that provide negotiation and mediation among different distributed architectural components, and the appropriate wrapping capabilities to realize differences in the interfaces. Each distributed system component engaged in interaction must provide a published interface specification to include syntax, grade of service, negotiating parameters, and behavior, through which access to processing and data can be realized. Finally, each system provides the appropriate middleware architecture components for reuse by the software components of the system, rather than each software component providing its own throughout the system.

Posture

Interoperability is about agreement. If two components are Òsimple,Ó the degrees of freedom between them are minimal and interoperability is likely to be successful. If two components are ÒcomplexÓ either in their nature, or in the nature of the distributed processing system upon which they depend, interoperability is difficult (if at all possible) to achieve. A number of distributed system situations must be considered: interactions between one software component and another, interactions between a software component and its operating environment (OE), interactions between a service within an OE and the service or services of a target (different) OE, agreement on the interfaces (name, syntax, and semantics), architecture of the components and their interactions involved in interoperability, and distribution transparency.

When a domain combines two or more different architectures, along with differences in the use of servers, the engineer for the domain must address a number of interoperability considerations, chief among them being architectural differences. In order for a component to achieve interoperability with another component, it must interoperate with the services provided by its OE. This is typically achieved by the component utilizing the application program interface (API) of the service. In this case, the component is bilaterally interoperating with a specific service (provided by a specific vendor, product, and version): differences are not hidden. Generic APIs for a given service are by and large not standard.

Architecture helps to manage the complexity of the system and helps identify solutions for supporting change in the system. Finding the appropriate architectural style that matches the problem and provides for evolution is the objective of Òsoftware architecture for the system.Ó As can be seen, interoperability addresses not only the interfaces between a software module requesting a service and a software module providing the service, but also between its peers, accounting for differences in architecture. Finding ways to compose heterogeneous architectures enables Òarchitecture interoperability,Ó and hence system interoperability. What is needed for interoperable distributed systems is a focus on the system level middleware architecture, mediating the differences in system architectures.

As depicted in � REF _Ref405960014 * MERGEFORMAT �Figure 1�, addressing interoperability between two applications utilizing different OEs becomes more complex. In this situation the two applications engaging in interoperable transactions must still be engineered to consider interface, behavior, and naming. In addition, because the OEs are different, engineering must also address the interface, behavior, naming, service offering, and architecture of each of the different OEs. In order for interoperability to occur, the architectures must be composable, the services mediated�, and the interfaces mediated. This will require middleware components between the two. In the general case, where distribution transparency is a requirement, the source service does not know the distributed processing services of the targeted service and must therefore approach interoperability in a general case. Currently, interoperability between some services cannot be solved, in the general case, requiring bilateral specific solutions. When an OE service is actually an entire framework of sub-services, interoperability to a different target is very difficult, and must be engineered carefully.

Cross-Domain Interoperability

The technologies to solve the interoperability problem within a domain are currently those of common hardware, common software, composable architectures, and standards on the interfaces. For example, it may be the case that within a given domain, a single OE is required. This then minimizes the interoperability considerations.

It is not reasonable to expect the same OE will be utilized across domains. There are fundamental differences in computation requiring different capable products: real-time, large-scale transactions, massive-data transactions, near real-time interactive responses, etc. The interoperating systems must solve representation differences, communicating results across distributed systems with different data representations and different database schema representations, such as functional, performance, evolutionary, and administration differences. Addressing interoperability across domains may require a more enhanced set of technologies than only those for interoperability within a domain. It is postulated that these technologies may include:

Federation�: Federation provides a means of negotiation, binding with distributed components which wish to come together in a federation; exporting service offers; importing service offers from separate subsystems; allowing or forbidding offers from federated components; communicating and negotiating policies; and support message passing, information sharing, negotiation, and transaction sharing.

Negotiation: Negotiator services are transactions that perform the actions: request for service, agreement to perform the service, delivery of the result, and agreement that the results conform to the request. Negotiators interact with a set of agents, providing the functions to support the negotiation process.

Trader: A trader is a component that links clients requesting a service with the interface identifier of the service provider. A trader provides trading within a domain for which there is only one trader

Mediation: Mediators perform translations between schema, data formats, wrappers, transactions, etc. Mediators also reconcile, integrate, and interpret information from multiple, diverse sources.

Distributed object manager (DOM): DOM provides the capability for users to identify and access available services in a dynamically configurable distributed environment. It requires the trader and other components to support the establishment between two or more interfaces.

Many of these technologies are still in research. Cross domain interoperability, short of bilateral agreements between every two domains, may be facilitated when some of these technologies appear as products. Currently, mediator products, trader products, database federator products can be found, although some are just now emerging.

�

Figure � SEQ Figure * ARABIC �1� Interoperability Considerations Between Two Different OEs

Summary

Distributed systems composition to realize interoperability and transparency is complex and in need of focused system and software engineering, system software architecture, and new perspectives on heterogeneous component interoperability across a system. Work in software systems architecture will formulate a focus on components and connectors, but work is still needed to focus on system level considerations; and with the future work, it will create a process to accomplish this, associate a style, decompose the style to technical architectures, and evaluate the architecture.

Interoperability and transparency are independent of the functionality of the system. To insert them into componentware architecture requires: analysis of the component, connectors, architecture, and interface to determine the interoperability and transparency risks; well defined interface specification for the component; well defined interface specification for the system; system middleware to support interoperability and mediate the differences; and a set of middleware services to support data mediation, communication mediation, interface mediation, negotiation of services, trading. In addition, for cross-domain system interoperability, even when the communicating mechanisms are available, federation, enhanced negotiation, and enhanced mediation components are necessary to retain the autonomy of the systems as well as negotiate for services. The ORB architecture should include Òdistributed services middlewareÓ components to support interoperability across dissimilar intra- and inter-domain systems. Further, a consistent approach towards interoperability across the systems should be stated, identifying where each strategy contributes to the interoperability solution.

References

Abd-Allah, ÒComposing Heterogeneous Software Architectures,Ó USC-CSE TR 95-502, 13 April 1995.

DISA, ÒDefense Information Infrastructure (DII) Common Operating Environment (COE) Integration and Runtime Specification (I&RTS),Ó Preliminary, Version 2.0, October 23, 1995.

Gary J. Nutt, Open Systems, Prentice-Hall, 1992.

International Organization for Standardization, 1995, Basic Reference Model of Open Distributed Processing, ITU-T X.900 series and ISO/IEC 10746 series.

Jon Crowcroft, Open Distributed Systems, Artech House, 1995.

Mary Shaw and David Garlan, Software Architecture: Perspectives on an Emerging Discipline, Prentice Hall, 1996.

� The views and opinions expressed in this paper are those of the author and do not reflect MITRE’s current work position.

�Distribution transparency is the ability to hide the details of some aspect of distribution (such as “location”) from system components.

� Mediate means to reconcile or arbitrate differences between two elements, typically through translation services.

� Federation is a collection of components participating in a confederation to coordinate sharing and exchange of information, such that the components retain their autonomy. Retaining their autonomy means that a component determines the information to be shared, which components may participate in the sharing, and maintains its freedom to modify its shared interface.

� PAGE �1�

