Composable Component Architectures

Andy Farrar

Science Applications International Corporation

A composable distributed component architecture has been a goal of CORBA from the beginning. However, while the need for reusable capabilities was a factor, current direction and commercial products do not seem to be meeting that goal. The current direction of the market is to provide a proliferation of individual CORBA servers to application developers. Applications must now talk to multiple servers to accomplish basic tasks. The overhead incurred by the number of external server calls can not be understated. Since a CORBA call is many times slower than a local C++ or even Java call, the number of external inter-process communications(IPCs) should be handled with care. The specifications coming out of OMG would have a developer believe that every object within a system could and should be a CORBA object, when in practice this is almost never the case.

Our experience within the DARPA Joint Task Force Advanced Technology Demonstration (JTF–ATD) has lead us to the realization that CORBA systems can exist, but they must be carefully designed to identify which objects are actual CORBA objects and which should be instantiated in an applications memory space. The problem with current component architectures is they cater to the CORBA server market not the service market. The server market leaves out those who would use the service if they could include it as a class library in their own code. There are many class library providers currently on the market but they are not fulfilling the needs of the CORBA community by providing the services that are already currently defined by the OMG. These commercial products come with proprietary class libraries and interfaces, instead of using the common interfaces defined by the OMG. In our experience a system built completely from CORBA objects is useful if the number of object remains very small, less then one hundred. Once the number of objects in a system grows large there are a number of modifications to the system that must take place. However, these modifications do not take the system design away from CORBA. In most of the CORBA specifications alterations for performance reasons are expected, but these seem to be aimed at performance gains within an ORB server not within the design of the service. We have found that the best compromise is to allow objects to flow from CORBA servers into the applications memory space and back based on the needs of the individual application. Our project extended many of our original CORBA servers by adding batching methods that would send objects or graphs of object between client and server with various graph pruning algorithms used to reduce the amount of network load and application overhead. The mixture of objects existing within both the applications and the ORB servers allowed the system to provided the most flexibility and best performance.

Since our project predated many of the OMG service specifications we had developed many of our own similar services, but in the last year we have been looking at moving these over to common OMG services. The lack of OMG services currently on the market was originally viewed as a obstacle to this movement, but as we began looking at the services that did exist they left much to be desired. Each service comes as a server, which demands extra IPC calls for each operation. Just using the Naming and Event service, that are available from most ORB vendors, requires a number of calls. Based on our development and the experience from the initial implementation of our system we have come up with a different approach to many of the OMG services. We are providing class libraries that implement the same IDL interfaces as the ORB server, but application and other server developers can use the class library directly in their code or as an ORB server depending on their own requirements. While there are issues with the various ORB vendors unique calls, this design allows for the most flexibility and greatly increases the amount of reusable code within the system.

The goal of this new design is to allow for developers to use the code components either as a library of code or as a ORB server, and allow objects to move back a forth from ORB server to client and back again. This approach allows us to provide for maximum performance while still allowing for language independence for the developers that are not writing in C++ or Java. Members of the OMG community should keep in mind the end uses of the services they are defining and incorporate the ability to use these services as both ORB servers and as code libraries.

