Support for Composite Events and Rules in Distributed Heterogeneous Environments

Roger Le and Sharma Chakravarthy

Database Research and Development Center

Computer and Information Science and Engineering Department

University of Florida, Gainesville

Introduction

The utility and functionality of active capability (Event-Condition-Action or ECA rules) has been well-established in the context of databases. Today, most of the commercial relational databases management systems (RDBMSs) some form of ECA rule capability. In addition, there are several research prototypes that have extended the ECA rule capability to object-oriented database management systems (OODBMSs). Sentinel, developed at the University of Florida ([1], [2], [4], [5], [6]) is one such prototype that supports an expressive composite event specification language (termed Snoop), efficient event detection (by using pre-processor generated wrappers), conditions and actions (as a combination of OQL and C++), multiple and cascaded rule processing (using a rule scheduler and nested transaction model), a visualization tool, and a rule editor for dynamic creation and management of rules. Some of the above results will be relevant for object-relational DBMSs that are currently being developed by the industry.

Although the ECA rule concept was developed in HiPAC ([3]) for providing a uniform framework for supporting many ad hoc functions (such as integrity constraints, separation of rules/policies from application code, access control, incremental view management) in the context of databases, their utility seems to be more universal than envisioned by its developers. As an example, the same capability can be used to support push/pull propagation of data in a distributed environment. As another example, workflow and E-commerce applications that are event-driven can be supported by extending the ECA rules concept to heterogeneous environments.

In order for the active capability to be useful for a large class of advanced applications, it is necessary to go beyond what has been proposed/developed in the context of databases. Specifically, the extensions beyond the current state-of-the-art in active capability are needed along several dimensions: i) make the active capability available for non-database applications, in addition to database applications, ii) make the active capability available in a distributed environments; that is, in addition to specifying ECA rules within a system, it should be possible to specify them across applications, and iii) make the active capability available for heterogeneous sources of events (whether they are databases or not). In the following sections, we will address how we are planning on addressing some of the above extensions using a combination of

existing components and new functionality/services that are culled from our experience in designing and implementing Sentinel.

Related Work

There has been some work in the detection of events in a distributed environment ([10], [7], [11]). In [10], the main emphasis is on the detection of events and the problems associated with it due to clock and communication problems. In [7], the emphasis is on processing a global event history that is gathered from individual event histories propagated by participants of a loosely coupled distributed environment. In [11], a global event detector has been developed as a server essentially to provide support for rules using events (both primitive and composite) generated in other applications. The global event detector provides asynchronous event notification to its clients as well as propagates parameters of the events (primitive or composite) for use in condition and action evaluation.

There are other attempts in using active capability in a distributed environment. TriggerMan [8], for example, accepts and processes rules in a separate address space (Triggerman server) that is connected to a number of information sources. An ability for data propagation to the Triggerman server using a variety of interfaces such as ODBC and OLE is being explored.

Apart from the above work related to active capability, a number of efforts in the commercial world have been addressing support for distributed components, notably CORBA and OLE/DCOM. Given that future distributed environments are likely to use these two component-based systems, it is imperative that we address the availability of services, such as composite events and rules, for these environments and provide support for them in a pragmatic framework.

Problem Statement

Based on our experience in developing active capability in Sentinel and for distributed database environments ([1], [2], [4], [5], [6]), we believe that the capability can be generalized along the three dimensions mentioned above, and supported using a component-based framework. For the purposes of this presentation, we have chosen to describe our approach using CORBA as we have some experience with it and were able to experiment with it for determining the alternatives proposed in this paper.

The general problem is to support event/rule specification dynamically, and their detection/execution for any number of systems that have an IDL interface. Our focus is on the specification, detection, and management of composite events as this aspect has not been addressed in the literature and we believe is important for a large class of real-life applications. We assume that each service on the ORB exports the set of primitive events local to it and has a mechanism for detecting them. We are also investigating rule processing in a distributed environment mainly using the capabilities provided by CORBA.

��

As shown in Figure 1, we assume that there are a number of services/clients/applications that are attached to an ORB. The dependencies between data exchange as well as execution of methods/procedures may need to be established for the overall operation of the distributed application. For example, if the availability of a critical component is a problem, that information nee to be sent to the designers to substitute an alternative available component so that the production line does not idle affecting the product shipment. If event-based rules can be specified across applications in a dynamic manner, the above can be specified and handled without having to change existing systems. The same is true in large enterprises having heterogeneous systems that need to coordinate and cooperate together for the overall functioning of the enterprise.

The composite event and rule specification interface in Figure 1 provides a tool for browsing the events that are visible globally in the system. Using these events as primitive events, composite events and rules can be specified which is sent to the composite event detection and rule execution (CEDaR) service. The CEDaR service decomposes the events, distributes events to sources of detection and constructs an event tree for its detection and rule execution. The individual systems that provide primitive events are assumed to be autonomous and only the exported events and calls through the IDL interface are assumed to be known to everyone.

In the next section we will briefly describe two approaches to supporting the above capability. The first approach used the event channels and the second approach uses basic Corba facilities without the need for the event channel. At the end, we draw some conclusions based on our analysis of the approaches proposed.

The Event Channel approach

The idea behind this approach is to use the event channel capability provided by the ORB to support composite events. The Event Service, one of the services specified by CORBA, can be used to implement the push event model. As shown in figure 2, the event channel is used to push primitive event occurrences to the CEDaR service, and selectively send composite (as well as primitive) events to consumers. In order to that, we need to use the broadcast capability in one direction and individual event channels in the other direction in order to avoid unnecessary broadcasts.

��

The above architecture is dictated by the current limitations of the Event Channel. The event channel broadcasts to all the consumers. It is not possible to select the consumer to you want to send the event. Hence we have multiple event channels, one per consumer as shown in Figure 2.

This is likely to have an effect on the performance, especially because the Event Channel has more than one sub-component that needs to be created for each instance of an Event Channel. Eventually, we will be interested in the persistence of events to implement some type of event recovery mechanisms. But currently this is not supported as part of the Event Channel implementation, and this has to be done by CEDaR.

The Event Factory approach

In this approach, instead of using the event channel, we use the basic functionality supported by an ORB.

The main feature of this architecture is the Event Factory (EF) that creates instances of events on demand. In this model, events are considered instances of Event objects and can be dispatched to other CORBA objects by passing their object references. Briefly, we envision creation of event instances for primitive and composite events using the factory approach.

Once the object reference of an event object is known, several producers can raise the same type of event (E1) by calling the RaiseEvent() method at the interface of the same Event Factory (E1).

Thus our architecture can achieve composability, when we need two or more supplier sources being able to raise the same type of event. We can supply the same philosophy to the interfaces PrimitiveEvent / CompositeEvent and Event/Consumer because a composite event is composed by other events (by definition!) and a consumer can subscribe to several events.

�

�

In this architecture, it is possible to have many PrimitiveEvent factories available at the same time, in order to handle different types of primitive events or to support scalability and fault tolerance.

This distributed architecture can achieve some degree of reliability and fault tolerance, because the event processors (Event Factories) are independent from each other. If one crashes, the others will continue to run. If there is a failure, the whole system won’t need to be restarted, only the faulty object has to be reinitialized.

There are a number of challenging issues that need to be addressed for this approach: communication delays have to be taken account, as well as the overhead to locate CORBA objects because of CORBA location transparency. The latter issue happens with the cold start of the system, and when new objects enter the system. But then the location of the object will be memorized, and its name resolution is not performed again until the system configuration changes when new components are accessing that object. Thus the performance of our system is mainly affected by the event communication that takes place between event processors.

Conclusions

In this paper we have stated the problem of supporting a service that provides expressive composite events, and rule execution in a CORBA environment. To the best of our knowledge, this capability is not available and a number of application areas we have looked at (such as manufacturing, concurrent design, workflow, enterprise integration, planning, logistics, information filtering) can benefit from such a capability.

Although the availability of the event channel was very appealing, we realized that there are several limitations that has a bearing on the capability that we plan on supporting: i) lack of the equivalent of a multi-cast capability entails using broadcast or point-to-point capability and may lead to performance problems and ii) lack of persistent querying for event channels necessitates tuning the buffer size appropriately for each applications needs.

At the same time, there are significant advantages to using CORBA as compared to our initial implementation of a global event detector using RPC and socket based communication. The IDL provides a common interface specification mechanism and avoids us building interfaces for each component. The ability to propagate objects across address spaces is very useful when sending parameters of events. The ability to make remote method calls is again useful in supporting the execution of rules in different address spaces. Finally, DII (dynamic invocation interface) enables dynamic specification and modification of events and rules.

Bibliography

 [1] E. Anwar, L. Maugis, and S. Chakravarthy. A New Perspective on Rule Support for Object-Oriented Databases. In Proceedings, International Conference on Management of Data, pages 99--108, Washington, D.C., May 1993.

[2] R. Badani. Nested Transactions for Concurrent Execution of Rules: Design and Implementation. Master's thesis, Database Systems R&D Center, CIS Department, University of Florida, Gainesville, FL 32611, October 1993.

[3] S. Chakravarthy et al. HiPAC: A Research Project in Active, Time-Constrained Database Management (Final Report). Technical Report XAIT-89-02, Xerox Advanced Information Technology, Cambridge, MA, Aug. 1989.

[4] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-K. Kim. Composite Events for Active Databases:

Semantics, Contexts, and Detection. In Proceedings, International Conference on Very Large Data Bases,

pages 606--617, August 1994.

[5] S. Chakravarthy and D. Mishra. Snoop: An Expressive Event Specification Language for Active Databases, Data and Knowledge Engineering, 13(3), October 1994.

[6] S. Chakravarthy and Z. Tamizuddin and J. Zhou: SIEVE: An Interactive Visualization and Explanation Tool for active Databases, p179-191, Proc. of the 2nd International Workshop on Rules in Database Systems (RIDS'95), Oct 1995.

[7] Ulrike Jaeger: Event Detection In Active Databases", Humboldt University of Berlin, Berlin, Germany, May, 1997		

[8] E.N. Hanson and S. Khosla: An Introduction to the TriggerMan Asynchronous Trigger Processor

In Proceedings, Rules in Database Systems Third International Workshowp, RIDS ’97 Skovde, Sweden,

pages 51--66, June 1997

[9] R. Orfali, D. Harkey, and J. Edward. The Essential Distributed Objects Survival Guide. John Wiley & Sons, Inc., NJ, 1996.

[10] S. Schwiderski. Monitoring the Behaviour of Distributed Systems. Ph.D thesis, University of Cambridge, London, 1996.

[11] Hui Liao: Global Events in Sentinel: Design and Implementation of a Global Event Detector

Master's thesis, Database Systems R&D Center, CIS Department, University of Florida, Gainesville, FL 32611, December 1997.

Figure � SEQ Figure * ARABIC �1�: Overview of ECA Rule Service

Figure � SEQ Figure * ARABIC �2�: Use of Event Channels

Figure � SEQ Figure * ARABIC �3�: Factory-based approach

