Achieving Maturity of Compositional Software Engineering Discipline





    Nenad Ivezic1), Thomas E. Potok2), and Kimberly D. Barnes 3)


Center for Collaborative Technologies Research


Computer Science and Mathematics Division


Oak Ridge National Laboratory





Abstract


Two pervasive issues found in the software development community today are the 1) reduced development cycle times, and 2) demand for higher productivity. Component based reuse is seen by many as a method to address these issues. However, there is evidence that component based reuse may not yet be achieving the desired results. We believe in a broader view that encompasses the history of other engineering disciplines and considers reuse not only at the component level but at the system level as well. We propose a vision of a software engineering process that supports component based and distributed software development for compositional systems. 


Introduction


A few years ago, it was common to develop a project on 2-3 year development cycle with a group of programmers all employed by the same company working full-time on a project. Today, the development cycles are often a year or less, and the programming team is typically made up of consultants, subcontractors, and full-time employees. The focus of software development has shifted from the creation of new systems to the enhancement or merger of existing systems. Enhancing a legacy system is typically far less expensive than developing an entirely new system; likewise, the merging of two systems may reduce overall development costs as well.


Productivity as Indicator of Effectiveness of Compositional Software Engineering


One of the proposed ways of addressing this new environment is by building new software from existing components. The concept is that these reused components can be developed to be general and of high-quality. Plugging reusable component into a new project not only can save the development time required for the components, but also reduce the maintenance costs of the project as well. There have been numerous studies on various aspects of component reuse that highlight the complexity of the issue [Berlin (1990), Dunn et al. (1991), Gamma et al. (1993), Griss et al. (1991), Kain (1994), Potok et al. (1997), Staringer (1994), Wessale et al. (1993)].  However, at what point reuse levels become cost-effective is still an open question.  Optimistic economic models [Henderson-Sellers (1993)] of reuse indicate that break-even reuse levels may be as low as 10-20%, while pessimistic models [Schimsky (1992)] contend that cost-effective levels of reuse may be much higher as well as difficult to achieve.


Taking a broader view of technology, Abdel-Hamid notes that recent spending on application development tools has increased at a 19 percent annual growth rate or higher. However, the inflation adjusted value added per software developer has not seen an increase in two decades [Abdel-Hamid (1996)]. One could argue that the current approach to developing software may limit productivity enhancements. 


We believe that a broader view of software development needs to be taken in order to meet the ever pressing demands of government and industry. On one hand, there are many lessons to be learned through mature engineering disciplines such as structural engineering. On the other hand, there is a vast wealth and investment in legacy software systems that are not likely to be rewritten. Any approach taken towards incremental component reuse is laking if it does not take into account reuse at the system level. We propose a high-level vision for expanding the concept of  reuse to the system level using patterns from established engineering models derived and validated for a specific application domain.


Achieving Maturity Requires More then Compositional Software Architectures


Achieving a mature compositional software industry we believe will require significantly closer ties between the software engineering discipline and the specific application domains (e.g., finances, banking, housing, education).  There are at least three important reasons:


Effectiveness.  To become increasingly effective, software engineering professionals need to understand the idiosyncrasies of the application domains so as to adequately implement ‘ilities’ in their solutions.


Complexity.  Software engineering spans virtually all facets of human activities.  Diversification and specialization of software engineers will be necessary to manage the complexity in an effective manner.   


Customer-driven market.  The rules of market will force the software developing competitors to get more intimate with their customer base, spend more time investigating the customer’s specific requirements, and customizing the design and the product to these requirements.


A parallel with a more mature engineering discipline, structural engineering, may help illustrate the point.  Structural engineers originally were in charge of designing and analyzing constructions such as bridges, buildings and so on.  As the new industries (such as auto and aerospace) were formed, the need to design and analyze these new types of structures called for specialization of the general discipline.  Over time, new challenges within each of the industries increased diversification of the structural engineers working within the different industries.   Today, a structural engineer with experience in the aerospace industry would have to re-educate himself to use different components and procedures if moving to, say, the auto industry.


Nevertheless, within a single industry, a structural engineer will typically have no significant problem in reading and understanding the design plans done by anyone else in the industry and a specific application domain.  For example, design details for a dam or a bridge will be accessible to another structural engineer in the construction industry based on the computational models and blueprints used for the structural design and analysis.  This uniformity in the assumptions and language of the profession allowed for  design and construction roles to be clearly separated in the industry.  For example, it is typical  for two or more independent contractors to bid on a construction phase of a building project for which design was done by yet another independent design firm.   It is perfectly possible in the construction industry that an assembly of contractors will come together to work on a particular project, complete the project, and never come to work together again.


Causes for this high-degree of shared understanding among  the structural engineering  professionals are numerous.  First, there is a common theory and nomenclature that underlies the behavior of most of common component structures from structural engineering that are being taught in undergraduate courses.  Whether a structural engineer is with the construction, aerospace, or auto industry, he/she will be familiar with the basis of Theory of Elasticity. However, the theory and the nomenclature would not be sufficient for two structural engineers to work together in an ad-hoc design team.  A great deal of domain-specific design knowledge has been accumulated over  the years and has been recorded within the textbooks which are now the legacy of the profession.  Great designs of bridge or conference hall structures have become part of literature of structural engineers in the construction industry, much the same way as the great structural disasters have as well [Petroski (1992)]. 


If we now accept that in the future, compositional software engineering will be developed to a great extent within a context of a particular application domain, the question may be posed “What will it take for the compositional software industry to mature?”


Many have asserted that there are benefits to software development as an organization matures. The notion is that organizational maturity increases the ability to meet schedule and cost commitments.  In other words, productivity increases and the likelihood of producing a product on schedule is enhanced as well. [Paulk et al. (1993), Humphrey (1989)].  Our view is towards the maturity of the industry, not just the organization. We believe that three goals have to be kept in perspective to eventually achieve an advanced maturation level of the industry:


Communication and collaboration.  The need for flexible, just-in-time software development teams, internalization of the software development industry, and higher rates of software production costs all place significant stress on the effective communication in the software engineering profession. Take a typical software engineering project at the mature design stage and pass it on to a new team for implementation.  The outcome would likely be disastrous.  The point is that the ad hoc processes of engineering software place the need for ease of communication of the requirements analysis and design decisions at the bottom of the priority list.   In contrast, within a mature engineering discipline such as structural engineering, the nomenclature and the technical language is highly uniform across the discipline allowing communication to be easily established. Once the communication among the members of the profession is easily achievable, irrespective of the cultural, time, and space differences, a true collaboration is possible.


Standardization.  In addition to being an important means to achieving communicability within the software engineering discipline, the standardization is also a necessary vehicle to implement market-driven development. The software developers need to be motivated to use standardized components where departures from these standards would be easily detected and would need to be justified by the developer and designer.  Tying the cost estimation approach to the code characteristics in this situation would likely lead to more accurate estimates.


Scientific Analysis, Prediction, and Explanation.  A basic requirement for compositional software engineering to become a mature engineering discipline is the capability to scientifically analyze, predict, and explain behavior of software components and systems made of these components.  Software engineering is at the early stages of development with respect to this capability.  The software pattern languages hold promise to capture important knowledge required for generalization, hypothesis generation, and experimentation which ultimately leads to evidence supporting or refusing a theory.  The other movement that holds promise is statistical-based modeling of software product behaviors and processes.  Detection of similarities, patterns, and regularities is we believe is a first necessary phase at this stage of maturity of software engineering.  Ultimately, a theory such as the Finite Element Method in structural engineering that allows analysis and prediction of behavior for large systems made of components is the desired outcome.  


We believe that with an application domain focus, achieving the above goals and maturation of the software engineering industry is possible only within a fundamentally new type of software engineering process.  In the following, we present one engineering process framework which supports the component-based and distributed software systems building and achieving these goals.


An Engineering Process Framework for Compositional Software Development


The process we envision is fundamentally different than the one currently used to establish distributed systems -the process is evolutionary, compositional, and collaborative. A shared language of understanding is a result, not an assumption of the process.  The starting point is a heterogeneous space of languages describing legacy applications and collabora�tive tools; the fundamental development is an iterative negotiation of the shared languages; and the outcome is a heterogeneous, evolving, yet agreed upon system of shared languages enabling interoperable software components, legacy systems, and collaborative tools.   


This innovative compositional software development process encompasses


autonomous creation and publication of software models by distributed software developers;


collaboration of application domain experts in proposing models that describe aspects of application domain; and


collaborative development and negotiation of domain models among software developers and domain experts, resulting in continued evolution and/or acceptance or rejection of such models.


Further development and update of component software models based on accepted domain models.


The necessary tools to make such a process possible include:


software modeling and wrapping tool to enable independent modeling and code wrapping of software components and legacy systems;


domain modeling tool to enable development of domain models on the basis of software models and domain expert inputs;


modeling support workbench to facilitate support of distributed, collaborative software and domain modeling; and


semantic-level communication language to provide knowledge-level communication and querying of software models.


One of the important technology capabilities on which the envisioned software engineering process framework is founded is the semantic meta-modeling language development.  Such a semantic meta-modeling language would capture a number of ubiquitous modeling approaches, be extensible, and would provide a solid semantic basis for software component description and interoperability within an application domain. Modeling languages that describe specific aspects of software, such as external behavior, interoperability require�ments, or dynamic interactions, will be derivable from this common meta-language.  This com�mon basis will allow more efficient building of shared understanding by collaborating users.  Advances in meta-modeling of software is an encouraging sign that makes the envisioned process more realistically achievable.


Summary


In this paper we point out the pervasive issue currently in the software development community of shorted development cycles and the need for higher software development productivity. Many have proposed a method of reusing software systems and components; however, evidence exists that these methods may not yet be achieving the desired results. We believe in a broader approach to addressing productivity issues within compositional software engineering. Our focus is to leverage the knowledge learned from the history of other engineering disciplines and view reuse not only at the component level, but at the system level as well. We broadly describe a vision of a software engineering process that we believe can address the maturity and productivity issues in building compositional systems. 


References:


L. Berlin. “When Objects Collide: Experiences with Reusing Multiple Class Hierarchies,” Proceedings of the Conference on Object-oriented Programming Systems, Languages and Applications, 181-193, 1990.


M. F. Dunn and J. C. Knight. “Software Reuse in an Industrial Setting:  A Case Study,” Thirteenth International Conference on Software Engineering, 1991.


E. H. Gamma, R. Johnson and J. Vlissides. “Design Patterns:  Abstraction and Reuse of Object Oriented Design,” Proceedings of the Seventh European Conference on Object Oriented Programming, 1993.


M. L. Griss, S. S. Adams, B. Howard, B. J. Cox and A. Goldberg. “The Economics of Software Reuse (Panel),” Proceedings of the Conference on Object-oriented Programming Systems, Languages and Applications, 264-270, 1991.


J. B. Kain.  “Measuring the ROI of Reuse,” Object Magazine, 49-54, June,1994. 


T. E. Potok and M. A. Vouk. “The Effects of the Business Model on Object-Oriented Software Development Productivity,” IBM Systems Journal, 36(1), 1997.


W. Staringer. “Constructing applications from reusable components,” IEEE Software, 11(5): 61-68, 1994.


W. Wessale, D. Reifer and D. Weller. “Large Project Experiences With Object Oriented Methods and Reuse,” J. Systems Software, 23(2): 151-161, 1993.


B. Henderson-Sellers. "The Economics of Reusing Library Classes," Journal of Object Oriented Programming, 6(4): 43-50, 1993.


D. Schimsky.  "Software Reuse: Some Realities," Vitro Technical Journal, 10(1): 47-57, 1992.


Abdel-Hamid. "The Slippery Path to Productivity Improvement," IEEE Software, 43-52, 7/1996.


W. Humphrey. Managing the Software Process, Addison-Wesley, Reading, MA, 1989.


H. Petroski. To Engineer is Human, Vintage Book , 1992.


M. C. Paulk, B. Curtis, M. B. Chrissis and C. V. Weber. “Capability Maturity Model, Version 1.1,”  IEEE Software,  18-27, 1993.











1)  ivezicn@ornl.gov


2)  potokte@ornl.gov


3)  barneskd@ornl.gov














