Distributed Objects with Quality of Service:

An Organizing Architecture for Integrated System Properties

Richard Schantz *, David Bakken, David Karr, Joseph Loyall, John Zinky

BBN Technologies, Cambridge, Ma

(*)schantz,@bbn.com, 617-873-3550

This research is funded by the Defense Advanced Research Projects Agency under Contracts No. N66001-96-C-8529 monitored by NRaD, No. F30602-96-C-0315 monitored by Rome Laboratory, and No. F30602-97-C-0276 monitored by Rome Laboratory.

An important research goal for our work in constructing large, geographically dispersed information systems on Internet and Internet-like communication substrates is to have predictable behavior under unpredictable circumstances. Our approach to this general problem area is to consolidate the various dimensions of interest of predictable behavior under the organizing principle of adding quality of service attributes to a distributed object computing context. An integration architecture and common framework named QuO, Quality Objects, has been developed. Under investigation and prototype development now are managed attributes (“ilities”) within the QuO architecture, in particular predictability for wide area network bandwidth consumption, and dependability in the presence of failures and outages. Real-time constraints and security attributes are desirable future directions.

This position paper has three parts. First, it reviews the context for our research and earlier conclusions on enabling technology. Second, it reviews the technical progress toward the goal. Third, it offers a set of technical issues framing our current vision for this work which we believe will be necessary to accomplish this ambitious vision.

1 Review

Projects such as the Joint Task Force Advanced Technology Demonstration (JTF/ATD; see Figure 1) motivate the need for a system of systems concept, operating and collaborating in a geographically dispersed, heterogeneous environment[1]. Within that concept, there is a need for an integrated view of system properties and design tradeoffs which can be used under the changing operating conditions. To do any reasonable technical integration of these properties we need some integration framework to get these properties to a common base.

Experience has indicated that to be effective, our distributed computing infrastructure needs new integrating glue beyond IP/TCP and its direct descendants. The distributed object abstraction is an outstanding basis for the needed advanced infrastructure. Today, the most advanced example of distributed objects for heterogeneous operating environments commonly available for current implementation is CORBA, using such languages as Java and C++. CORBA gets you part way there: functional integration, heterogeneity, IIOP, COTS infrastructure. Our philosophy is to take the gains and industry acceptance, cost savings, available training, etc. of the solution space available commercially right now, fix any deficiencies in work to date, and provide a basis for adding missing capabilities. In our view, the most pertinent of the missing capabilities fall in the area of support for predictable behavior needed for mission critical system development (aka “ilities”). These encompass areas such as predictability in performance characteristics, dependability, real-time behavior and survivability (security). Each subproblem is difficult by itself, has many parts and possible solutions, and already has specialists and a body of knowledge. Our approach is to work on each of these first independently within a common subcontext, and work with the experts in each subdiscipline toward integrating their specialty into the appropriate large scale, Internet based system development paradigm.

2 Work in Progress

Work is in progress in a number of areas to see the above vision proceed [2,3,4]. What is currently being done or contemplated at the distributed object layer is to make more transparent or separate support for system properties under varying conditions [5,6,7,8]. The first step in this process is to make the design decisions of an implementation identifiable and changeable (replaceable by a more appropriate implementation, and identifying the conditions under which each is appropriate).

�

Figure � SEQ Figure * ARABIC �1�: Collaborative Planning for Crisis Management Foreshadows the Complexities of Future Systems

We have developed Quality Objects (QuO), a framework for including QoS in distributed object applications [15]. QuO provides an environment in which a programmer can specify possible QoS states, the system elements that need to be monitored and controlled to measure and provide QoS, and behavior for adapting to changes in QoS. In this way, QuO opens up distributed object implementations [4, 7], providing control of both the functional aspects of a program and its implementation strategies, which are often hidden behind IDL interfaces. Current QuO projects are adding quality of service attributes to CORBA.

To do this, QuO introduces the concept of QDL (Quality Description Language) to complement IDL (figure 2). QDL provides a suite of programmable description languages for defining aspects of the QuO application, and provides code generators that will eventually weave them together. QuO’s Contract Description Language (CDL) provides regions defined with QoS parameters involving both the expected and observed interaction between the client and the object, and hooks to resolve their divergence. To do this, the runtime arbitrates the contract by measuring the observed behavior and invoking handlers as specified in the contract. In doing so, QuO necessarily integrates design, policy, and measured information from different providors, locations, and times.

� EMBED Word.Picture.6 ���

Execution Model of a QuO Application

In a traditional CORBA client-server application, a client makes a method call on a remote object through its functional interface. The call is processed by an ORB on the client’s host, delivered to an ORB on the object’s host, and processed by the remote object. The client sees it strictly as a functional method call. As indicated in Figure 3, a QuO application adds additional steps to this process. The QuO client-server application not only consists of the client program, ORB, and object, it also has the following components provided by the QoS developer:

A local delegate of the remote object. The delegate provides a functional interface identical to the remote object, but triggers contract evaluation upon each method call and return. The QoS developer provides alternative behaviors and a dispatch statement which chooses among the alternatives based upon the current state of the contract. Possible alternatives are to choose among alternate methods, throw an exception when the remote method call is likely to fail, block until the desired QoS is achieved, or pass the method call through to the remote object.

A QoS contract between the client and object. This specifies the level of service desired by the client, the level of service the object expects to provide, operating regions indicating possible measured QoS, and actions to take when the level of QoS changes.

System condition objects, which provide interfaces between the contract and resources, mechanisms, objects, and ORBs in the system. These are used to monitor conditions that affect the QoS perceived by the client and to access interfaces for controlling mechanisms that affect QoS.

Figure 3 also illustrates that a method call in a QuO application is passed to a local object delegate, which triggers contract evaluation and selects behavior based upon the current state of the contract.

�

Figure 3: A remote method invocation in a QuO application

Quality Objects (QuO) [9] a part of a larger DARPA effort (Quorum) aimed at providing a framework for supporting integrated, adaptive behavior in large-scale systems. Some key aspects currently being developed include network bandwidth resource reservations, replicated object groups, an integrated and adaptive runtime environment, and a companion modeling environment. These issues are being developed through a number of interrelated DARPA projects: DIRM is using QuO to reserve and manage bandwidth with RSVP, and AQuA is using QuO to reserve and manage availability with Ensemble [10] (the next-generation of Horus [11]) and modeling availability and performability with UltraSAN [12].

3 Aspects of the Vision

Although we are taking important steps right now, we are still at the early stages toward our goal. At this time we see the following as being fundamental to our vision:

We anticipate that there will need to be many different specialized Corba implementations optimized for subdomains, much more robust and interoperable with each other based on improved product maturity and improvements in IIOP

We see the need for many different (and often customized), vaildated approaches to handling the “system properties” over particular domains (not one size fits all)

Easily switching between implementations as circumstances change is very important and the cost needs to be reasonable, and consistent with the granularity appropriate to the changeover

We need an easily adaptable reference base (QDL) and information collection base (system conditions) to monitor and regulate the (highly dispersed) elements of the system

References

[1] NOSC, Joint Task Force Advanced Technology Demonstration, Internet Publication (URL http://jtfweb3.nosc.mil/).

[2] ISO, Quality of service framework. ISO/IEC JTC1/SC21/WG1 N9680, International Standards Organization, UK, 1995.

[3] Sluman, C. Quality of service: An industry perspective. In Proceedings of the Sixth IFIP International Working Conference on Dependable Computing for Critical Applications, IEEE, March 1997, to appear.

[4] Bakken, D., Schantz, R., and Zinky, J. QoS issues for wide-area CORBA-based object systems. In Proceedings of the Second International Workshop on Object-Oriented, Real-Time Dependable Systems, IEEE, February 1996.

[5] Kiczales, G. Beyond the Black Box: Open Implementation, IEEE Software, January 1996.

[6] Xerox Corp. Aspect-Oriented Programming. Internet Publication (URL http://www.parc.xerox.com/aop).

 [7] Maeda, C., Lee, A., Murphy, G., and Kiczales, G. Initial Design Concepts for Quality of Service. In Proceedings of the Sixth IFIP International Working Conference on Dependable Computing for Critical Applications, IEEE, March 1997, to appear.

[8] Bakken, D. On Specification, Metadata, and Binding of Multi-Property Quality of Service In Proceedings of the Sixth IFIP International Working Conference on Dependable Computing for Critical Applications, IEEE, March 1997, to appear.

[9] Zinky, J., Bakken, D. and Schantz, R. Architectural support for quality of service for CORBA objects. Theory and Practice of Object Systems, Special Issue on the OMG and CORBA, 3(1), April, 1997, to appear. See also http://www.dist-systems.bbn.com/ papers/97/TAPOS/QuOTAPOS.ps.

[10] Cornell University, The Ensemble Distributed Communication System, Internet Publication (URL http://simon.cs.cornell.edu/Info/ Projects/Ensemble/index.html).

[11] van Renesse, Robbert , Birman, Kenneth P. and Maffeis, Silvano. Horus, a flexible Group Comm-unication System, Communications of the ACM, April 1996.

 [12] Sanders, W. H., Obal, W. D.,. Qureshi, M. A, andWidjanarko, F. K. The UltraSAN modeling environment. Performance Evaluation, Special Issue on Tools for Performance Evaluation, 24(1),1995. See also URL http:// www.crhc.uiuc.edu/UltraSAN/.

