Security Policy Administration in Compositional Architectures

Ken Smith, Don Faatz

The MITRE Corporation

1	Security Issues in Distributed Object Systems

Security has grown in importance as computer applications have become more highly networked, becoming an enabling technology for applications like internet commerce, corporate collaboration, and defense networks. The presence of strong reliable security measures raises the level of trust and encourages participation in environments which use distributed object technology as a backbone. In a distributed object environment, ÒsecurityÓ tends to be expressed as an amalgam of underlying services such as: access control, audit, delegation, non-repudiation, and secure invocation. This set lacks coherence because any vulnerable facet of the system (e.g. communication between parties, access to important objects, transfer of control) must be secured.

As compositional architectures have evolved by standardizing services and architectural abstractions (e.g. CORBA), and component execution environments (e.g. Com Server), it is becoming easier to compose new systems by combining functional components (both new and pre-written). This trend is not without new security challenges, including:

1	Rogue components. Under the Òplug and playÓ paradigm, a hostile (or incorrectly designed) component could rapidly spread and wreck havoc on many systems.

2	End-to-end service requirements. Many security services are Òend-to-endÓ, requiring each building block of a system architecture to be friendly to that service. For example, authentication of browser-based database users can be done via a secure sockets layer connection directly from the browser to the database, however this leaves intervening tiers (which may manage execution threads) unaware of the authentication. Also: if some module is involved in an end-to-end security service, any component instantiating that module should support that service as well.

3	Evolving security technologies. As security technologies continue to rapidly evolve (e.g. the advent of digital certificates), standardized architectural frameworks must also gracefully evolve to support these advances.

4	Security policy administration. In a large complex system with many objects, some of which produce and manage their own abstractions, it is difficult to correctly administer/enforce a system-wide security policy.

The first three challenges have received some attention (especially the first [1,2]) and a variety of solutions. This paper addresses the fourth issue of policy administration. Although seldom addressed, it nonetheless poses a large potential barrier to achieving acceptable security in modern distributed object systems.

2	Security Policy Administration Problems

The enforced security constraints for a system are expressed in a policy. Often, a separate policy is defined for each service. Policies are typically expressed in natural language for the purposes of definition and negotiation. The administration of policies includes enforcing them, by mapping them to an implementation using security interfaces of the underlying architecture, and maintaining this implementation under incremental changes. Correct enforcement of security policy is vital, it undergirds the trust-building value of security technology.

Compositional architectures have also addressed the standardization of a security architecture and services, providing a mechanism for enforcing security policy. A notable example is the CORBA security specification [3], which we draw on heavily in this paper, however the DCOM/ActiveX and Java environments also standardize many security features. Because object invocations and intercomponent messages are readily intercepted in Òbus-likeÓ component architectures, security enforcement emphasizes inter-object messages and object interfaces. While this approach enables many powerful security functionalities, two problems arise with respect to security policy administration:

Problem 1

	Objects themselves are treated as opaque; and security is enforced at their interface boundary. Security policy which applies to object internals is difficult to enforce, and requires ÒteamworkÓ between the objects and the architecture.

Problem 2

	The abstractions in which a security policy is expressed may not correspond to the abstractions by which that security policy is enforced. Also, abstractions implemented within opaque objects may not correspond to each other, to architectural abstractions, or to security policy abstractions. A common ÒvocabularyÓ is needed to enable communication.

These problems are illustrated by the following example:

Consider a CORBA-based system for receiving structured messages and storing them in a DBMS. A structured message is a text with associated tags (e.g. message-type, author, topic). Basic tags may simply extracted by parsing the message format, even more information can be extracted via . parsing techniques. The resulting information is sorted, and stored (by message-type) as a record in a table of a relational database for archival and to support queries. The important objects in this system are:

1	Raw messages. Stored as files in a file structure. There may be thousands.

2	Message parser. Parses a message, then inserts it into the DBMS.

3	Message Inspector. Inspect the fields of a message.

4	The DBMS. Stores messages in tables (by message type), and supports queries.

The message parser and message inspector are new component-based tools, designed to share code. The DBMS is a standard full-featured off-the-shelf relational DBMS product. The following policies are agreed upon:

Audit policy: All read accesses by analysts to type 1 messages must be audited.

Access policy: Permit all users to read all type 1 messages.

Because objects are opaque (problem 1), the security administrator faces several complexities in enforcing the audit policy as stated:

1	In CORBA, audit decisions can be based on the specific object and operation being invoked, and by the invokerÕs security attributes. Therefore, any use of a read method on the message inspector object by a user with the ÒanalystÓ security attribute can be intercepted on the ORB (assuming security attributes have been agreed upon which support this security policy). However, detecting whether the message accessed has type = 1 must be done by the message inspector.

2	For messages stored in the DBMS, this problem is worse. Every access to the DBMS interface is of the form Òexecute SQL string: xxxxxÓ, so both the message type and access type must be detected internally by the DBMS. The test for users in the ÒanalystÓ role could be carried out in either place, since DBMSs permit the definition of user roles, but it should be clear where the check is being made.

To enforce the above security policy, there clearly needs to be ÒteamworkÓ between the framework and the objects (e.g. DBMS, message inspector) themselves to coordinate an enforcement strategy.

Assuming we solve the ÒteamworkÓ problem, we are still faced with a lack of correspondence among policy and system abstractions (problem 2) when enforcing the access control policy:

1	The raw messages stored in the file structure exist at a lower level of abstraction than the policy statement Òall type one messagesÓ. The mapping between the two is need for policy enforcement, and is only discovered by examining the type attribute of each message. One option is to find and alter every method in the message inspector to test the type attribute before permitting read access. Careful bookkeeping is needed to ensure new methods make the appropriate tests for current policy. Another option is to iterate over every message in the file system, and set the appropriate file system security attributes for each type 1 message discovered. All new messages then must be tested as they enter the system. In either case, the security administrator must remember (and dynamically maintain) the correspondence between the policy abstraction and the files, and must periodically traverse that correspondence when policy updates occur.

2	In the DBMS, an abstraction corresponding to the one used in the policy does exist. Assume all type 1 messages are all stored in relation: Typeone. There is a simple SQL command to permit any user read access to relation Typeone. Note, however, knowledge that Òall type 1 messagesÓ in the policy is equivalent to the relation Typeone in the DBMS cannot be presumed. In a large complex system the security administrator may not be familiar with the meaning of each relation in a DBMS. Without such knowledge, this simple fix cannot be utilized.

To enforce this access policy, there is clearly a benefit in having (and recording) a shared vocabulary of policy concepts, complete with mappings between terms and implementations.

3	Our Position

Security policy administrators need help. A compositional architecture must provide automated assistance if security policy is to be enforced in an acceptable manner. In large systems we have studied, there is simply too much bookkeeping required to accurately enforce complex (possibly interacting) security policies accurately without some form of automated support.

To do this, we propose the following:

1	Standardize commonly used security policy abstractions. This provides a crucial common vocabulary (e.g. a DBMS and the architecture could agree that ÒroleÓ is a named aggregation of users). This also makes it possible to define a mapping between these policy abstractions and locally implemented abstractions.

2	Define a standard mechanism for objects to share enforcement responsibilities. Objects cannot be ÒislandsÓ with respect to policy enforcement. However, for them to participate there must be a means to publish abstractions implemented inside the object (e.g relations), to publish security policy enforcement mechanisms available for these abstractions (e.g. DBMS audit features), and a means to communicate security responsibilities corresponding to what is published.

3	For a system, maintain (or augment) a repository with enforced policies, abstractions (both local and standard) and mappings. If terms and mappings are recorded, the security administrator does not have to repeatedly discover them by manual examination of the current system.

4	Customized security mediators are needed to map between abstractions Mediation helps address the mismatch between levels of abstraction [4]. Ultimately, the security administratorÕs work can be greatly simplified by security mediators [5] which utilize repository information to translate policy-level changes into appropriate enforcements in the system. Mediators can also help administrators visualize their systemÕs security structure and make informed enforcement choices.

We envision a security policy administrator being supported in the following manner:

	As objects enter the system, they publish their abstractions and security enforcement capabilities. These abstractions are mapped (manually or semi-automatically) to the standard vocabulary in the repository. Currently active policies are represented in the repository in a similar fashion. Decisions about enforcement responsibilities are then made (automated help can be applied). Based on these repository mappings and enforcement strategies, mediators are semi-automatically generated to assist in configuring policy enforcement mechanisms and in updating them. Finally, as security relevant actions occur, enforcement mechanisms which have been put in place ensure the agreed upon policies are correctly enforced.

We feel this approach, or one similar to it, is critical to ensure correct security policy enforcement in increasingly large and complex distributed objects systems.

4 References

[1] Hostile Applets, http://www.rstcorp.com/hostile-applets/index.html

[2] ActiveX as a Hacker Tool, http://www.news.com/News/Item/0,4,7761,00.html

[3] OMG, December 1995, CORBA Security, Document Number 95-12-1

[4] Wiederhold, G., Mediators in the Architecture of Future Information Systems. IEEE Computer 25, 3, March 1992, pp. 38-49.

[5] Smith, K, D. Faatz, and L. Seligman. Security and Mediation. In Proceedings of the Rome Laboratories Workshop on New Directions in Data Management Security Research, Concord, Mass. 1996.

�	 � &

