Scaling Up the SBD Virtual Prototyping Environment

Dr. Henson Graves

Dr. David Milgram

Lockheed Martin Advanced Technology Center

BACKGROUND

The Lockheed Martin Advanced Technology Center (Palo Alto, CA) is under contract to DARPA to build a Virtual Prototype construction and management environment called Simulation Based Design (SBD). A Virtual Prototype (VP) is a software model of the product or system being built by an enterprise. The SBD instance integrated for the Virtual Prototype not only builds the VP but also links the design, analysis and simulation tools that interoperate with the VP into executable collaborative work processes.

Among the key system requirements for SBD are:

¥ support for full lifecycle product development

¥ integration of legacy tools, data, and processes into a collaborative framework

¥ distributed operation across heterogeneous computing and network resources

¥ scalability for large enterprise developments

¥ cost effective policies for installation and maintenance

Lockheed Martin has addressed these requirements through the design of the SBD Core Processing System (CPS). The CPS reflects key architecture design decisions:

¥ product/system represented as an object model

¥ tools enscapsulated as objects with methods

¥ engineering processes captured as mega-program objects

¥ use of software agents to monitor and enforce development processes

¥ use of CORBA to enable standard access to all application objects

¥ use of Java as a platform independent development language

DISCUSSION

The engineering process for a virtual prototype involves composition, simulated operation, and analysis steps. The composition step for a complex product such as a space-based telecommunications system, involves components such as satellites and their communication payloads, ground stations and their network interfaces, set top boxes, etc. Composing a virtual prototype from its component structure may require a variety of COTS products such as CAD tools and Product Data Managers that construct and populate product data structures. Similarly, the engineering processes that analyze end to end behavior and embed the system development process in the larger enterprise process consist of a variety of legacy tools, codes and simulations.

SBD has chosen an object oriented approach to representing and managing the application data and work products of the engineering processes. The scope of Lockheed Martin systems may encompass millions of objects in dozens of heterogeneous repositories including large relational databases scattered across the enterprise. The ability of SBD to scale up to handle virtual prototypes of this magnitude is crucial. This brief paper discusses some of our design decisions and related scale up issues.

Within an SBD system, the component called the Object Server provides users the ability to locate and access the application objects. Querying the system to locate objects may result in a search of a very large object space that returns information about a large number of objects. For example, a product may be an assembly of 10 million individual components and the product catalog from which its components are selected may have tens of thousands of entries. Moreover, there may be hundreds of tools and simulation codes that operate on the virtual prototype. Accessing an object may invoke a behavior method of the VP or may invoke a tool to operate on the VP. Thus, there are no essential distinctions between objects that constitute the product, including its behaviors, from those that constitute the application processes that are used to design and analyze the product.

A fundamental architectural decision was to use CORBA as the Distributed Object Computing Framework on which to build the SBD system. This decision allows SBD to exploit COTS standards and software to satisfy the requirement of distributed operation across heterogeneous computing environments.

Having chosen an object-oriented approach to representing and managing the application data and tools that operate on them, we needed an object-oriented language framework to describe the application objects (corresponding to the virtual prototype, its components and the tools that operate on them). Our second architectural decision was to use CORBA IDL as the application object language, as well as the framework for integrating components of the SBD systems and the databases and repositories in which the application objects are stored.

There are some obvious benefits of this decision. CORBA naming services can be used to manage the application object name space. Application objects may be remote CORBA objects, registered with the ORB, somewhere on the net or they may be contained within some object collection repository. Each application object has an interface description in IDL. Querying an object, or the repository that contains the object, results in returning an IDL for the object. This descriptive information allows for the dynamic invocation of tools on the application objects using CORBA mechanisms. Thus, using a CORBA representation of the objects and tools provides a uniform, platform independent, distributed framework for operating on the application objects.

However, this decision raises scaleup issues stemming from the large number of application objects. For example, a straightforward but poorly designed implementation of the object server query capability might result in the access of tens of thousands of individual objects in remote locations if their names and metadata are needed at the client site to build a directory. This could overstress the network, the processors and the users if too many CORBA connections are made. One solution is to have repositories return proxy objects that provide sufficient information about the collection without having to invoke each object in the collection to obtain the needed information. We are experimenting with different appoaches to this scale up problem.

CURRENT STATUS

We are currently in the final stages of the CPS alpha release and have an operational prototype of SBD. Our experience with the issues discussed above is based on a number of pilot implementations in which tools and data sources are integrated to capture an important engineering analysis or tradeoff as threads of an overall lifecycle process. These pilots have run concurrently with CPS development and have used components of the CPS. The pilots will migrate to the alpha version of SBD once it has been released.

Central to alpha testing is validation of SBD scalability, ease of use, and cost. On the basis of validation experiments we will modify the design accordingly. In particular, experiments will test the following requirements:

¥ response time to operate on large object collections

¥ ability to integrate tools to be linkable

¥ ability to construct and assemble product models

The results of testing will be incorporated along with additional planned functionality into a beta release scheduled for 1Q98.

