

Services first, Components Second!

A Positional Paper Submitted to the

OMG-DARPA Workshop on Compositional Software Architectures

November 20, 1997

Louis Coker, lcoker@teknowledge.com

Rick Hayes-Roth, rhayes-r@teknowledge.com

�
Services first, Components second

Having decided, based on significant painful experience, that C++ combined with CORBA components does not yield reusability or convenience when developing a medium size distributed system, we have decided to try a different route – services rather than components. Ordinarily the term ÒcomponentÓ suggests both modularity, assemble-ability, and functional loose coupling, as when one selects various ÒcomponentsÓ for a stereo system. Our experience shows that building components which have these characteristics, when “component” is used in this sense, is not easy. A large part of the problem is that useful inventions, either hardware or software, tend to have to go through a significant period of discovery and evolution before they have a reasonable set of useful capabilities. Many software and software systems organizations do not get the opportunity to produce a series of similar or evolutionary systems and so cannot, practically speaking, produce components with these characteristics. On the other hand, the basic characteristics of a system’s components and even the base characteristics of component interaction tend to be based more on architecture than individual function, can be more easily defined, and are significantly less mutable over time. This means that they can be specified more quickly and need much less discovery and evolution to reach a really useable state. Providing these things as services that components use to get their jobs done is an easier and even a necessary first step in building reusable components. Further, we are interested in service composition and configuration, meaning that from a defined base set of services we want to produce some combinations that are most appropriate to the requirements of particular applications. Our feeling is that services can be combined either by loose coupling or ÒunionÓ; or, alternatively, services can be composed in ways that exploit or create some unique interactions, hopefully leading to better performance and more convenient use.

The Common Object Request Broker Architecture (CORBA) provides a good subset of these kinds of services but it is not complete in significant areas. Based on our experience, we have defined additional areas of services that are needed to provide the extended functionality required to meet our needs. We are currently establishing requirements and design for these services for use in the Joint Task Force Advanced Technology Demonstration (JTF ATD) project. We are using our experience and Java prototypes to help in this effort. Following this, the services will be completed first in Java and then in C++ and we will then build our components on top of these services.

BACKGROUND OF THE PROJECT - The Short Form

Over the past four years, the Defense Advanced Research Projects Agency (DARPA) has been engaged in developing a new architecture for a combined crisis action planning and non-tactical command and control (C2) system. This architecture, called the Advanced Information Technology System (AITS) Reference Architecture, specifies the qualities needed for such a combined system:

Applications using a common schema of object classes for planning and C2

Applications creating complex hierarchical collections of planning and C2 objects called object webs

Applications exchanging object webs locally and remotely with good performance

Multiple sites, highly distributed

Location transparent collaboration of multiple users across widely distributed locations

CORBA-based applications and servers

Managed inconsistency of objects and data

Communications bandwidth-aware and bandwidth-adaptive applications.

The Joint Task Force Advanced Technology Demonstration (JTF ATD) project was started in 1994 to develop a reference implementation of this kind of planning and C2 system for use by the Joint Task Force (JTF) commander and attendant JTF staff. The project has done several ambitious things that make it interesting including distributed development over the Internet, automated system builds each evening, and designing servers on a central concept for application object and information exchange. The system, designed as a CORBA-based system programmed largely in C++, has grown up with CORBA and has had some major growing pains as well as an impressive set of lessons learned.

A major lesson has been in our use of C++ object classes in relation to CORBA and CORBA components. A primary tenet of the AITS Reference Architecture is that the many planning and C2 applications in such a system will be creating, exchanging, and evolving complex hierarchical collections of planning and C2 objects called object webs. It was decided early on that, since applications were going to use object webs as their main means of expressing planning object relationships and exchanging information, a set of object web capabilities would be developed and incorporated into an object web and web node component set that could be specialized for any given application’s use. This would provide a common base for object webs that everyone could use with basic object web characteristics, e.g., persistence, object instance version management, web relationships, and replication, that could be inherited by all object web using applications. This was especially reasonable given that most of our applications were object web using applications. We would also provide other characteristics, such as communications awareness, at this same level.

A second major lesson was that performance made a critical difference in an application’s acceptability to our users. When dealing with a single object or small collection of objects, some delay is acceptable and functionality outweighed annoyance. This delay quickly grows unreasonable when delays are additive and you are dealing with thousands of objects at one time. In this case, functionality is not strong enough to override the annoyance caused by slow performance.

C++, CORBA, AND THE DISTRIBUTED SYSTEM EXPERIENCE

We went through several generations of discovery and iteration on our object web components and on the specializations of them. Practice did not follow theory as nicely as one would hope. Since we wanted our servers to perform specific types of work that would depend on other servers doing other specific types of work, our servers were both servers and clients to other servers. We had the problems that you might expect given this situation. We found that, due to the C++ object manipulation model, specialization of object webs for specific purposes led to both server and client applications needing to be cognizant of all or the majority of object web specializations. If we tried to simplify this, our applications had real troubles exchanging and using object webs that contained multiple types of web objects. If we didn’t simplify, our applications became large and unwieldy and our engineers needed to be educated on all of the various object web specializations. Further, we found that our ORB infrastructure was not as robust as we desired. We found that client applications accessing server-based object webs with thousands or tens of thousands of objects in them was slow and got much slower as our objects collections got large. The causes of this slowness included the ORB, interprocess delays, the number of layers of software involved, and inefficient design in some areas of our applications. We could affect the numbers of layers of software involved and correct the inefficient designs areas. This helped but we still found that the sheer number of interprocess accesses that were happening slowed our applications down unacceptably. When we tried to correct these problems by providing batch retrieval of object collections, we got much better performance but broke the overall object paradigm of objects with intrinsic behaviors residing in servers. This also led to build and code dependencies that have been hard to correct and which have cost us much project time to deal with. We finally realized that doing business in this way was not very effective and we decided to change it.

THE SERVICES SOLUTION

We had done enough experimentation and trying out of different component-based solutions over the three years that we realized that there were basic characteristics needed in the system’s object web and other components and in their interactions that could not be expressed effectively or efficiently at the CORBA component level. We also realized that the CORBA services concept offers a way to provide these basic characteristics without the problems and limitations described above. By providing characteristics of objects that can then be combined into a variety of useful objects, we reduce the need to create objects which are then specialized. By reducing the need to create specialized objects, we reduce the complexity of our interacting applications. We decided that a services-based approach on which components can be built provides an easier and cleaner way to create our planning object webs with the needed set of characteristics. In designing the needed services and their characteristics, we found that the CORBA services are not complete enough for our needs in features, in commercially available and high performance services, or in the types of services defined.

CORBA services that are relevant to us are Naming, Events, Relationships, Persistence, Querying, Transactions, Concurrency, and Security. Some of these services need different features. For example, Events needs to provide filtering of event occurrences and selective notification to clients. These capabilities are needed to allow our applications to monitor objects in a variety of ways and initiate planning actions based on a number of tailorable criteria.

The services need to be commercially available and most are not. This means that we need to provide our own implementations of the services and some take a lot of software development. Security especially is not available at level 2 and this makes any system engineering job much harder. Commercial implementations of CORBA services and of ORBs need to be robust and high performance and, in many cases, they are not. Our ORB, for example, has a real slow down above about 20,000 objects because of the way it searches for object references and 20,000 objects is really in the low end of our range for number of objects. The more efficient the CORBA services are and the more efficient the ORBs, the better our applications can appear and the more we can affect performance by improving our own software’s efficiency.

Finally, more services need to be defined to meet the needs of highly distributed, robust, and flexible systems. Objects need to be able to support collaboration of clients with multiple instances of the same object which are treated as different versions of that object. This is needed in addition to having multiple versions of an object’s interface. These different versions of an object need to be able to be reconciled with each other so that clients of objects can adjudicate their individual or conflicting changes. For performance reasons and to provide access when communications links are slow or go down, objects should be able to be replicated between servers. This capability should be transparent to client applications using the replicated objects. There should be defined service interfaces for efficiently finding, handling, and moving large collections of objects. In an environment where communications speeds vary significantly over time objects need a service allowing them to be communications bandwidth aware. Objects need to be able to be updated in transactions but might not be able to participate in a standard concurrent transaction due to communication or use limitations. So the transaction service should provide for managed consistency AND managed inconsistency. Objects and their services need to support policies on their behaviors. A service is needed to set these policies on objects for a variety of things (e.g., access, persistence, management of instance versions, replication, relationships, concurrency, transactions, communications awareness). To meet these needs, we are having to design and build our own versions of these services.

Future

We are currently creating the requirements and design for our services implementations. These are based on our experience and knowledge from the last three years of system development and on use cases that we are developing. We plan to have initial Java implementations finished in a few months on the core services and will begin on C++ implementations. As mentioned above, a challenging area is performance. We are expecting to attack this in two ways. We will develop services individually but distribute them as packages of services. These suites of services will run from a single library or service executable that will greatly reduce the overhead of accessing multiple services for a single object. The selection of the right combinations of services to offer in our suites will be based on analysis of our user’s needs. For collections of objects, we see that a batch or collection interface that moves whole collections from server to client and back again efficiently is needed for some applications. By late next year, we expect to have a pretty full suite of services and applications that can be used as the basis for AITS Reference Architecture crisis action planning and C2 systems. This suite of services and applications should be robust, efficient, and capable of coordinated and effective global distribution of services and capabilities for our users.

�

(footnote continued)

Services First, Components Second		November 20, 1997

Services First, Components Second		November 20, 1997

	�

	�

