Paper For the Workshop on Compositional Software Architectures

DARPA ISO Architecture Lessons Learned

by John McKim, The MITRE Corporation

This paper reflects the thoughts and ideas of the author and may not represent those of DARPA, their contractors, or managers of the various projects. (I will remove for the final version - after Dr. Signori of DARPA has a chance to review it.)

Abstract

The DARPA Information Systems Office (ISO) is developing an architecture to facilitate and accelerate the transition of advanced technology from DARPA to the Defense Information Infrastructure (DII). A fundamental objective of this effort is the specification of an architecture that enables the development of ISO applications that can be easily integrated into a quantum increase in operational capability, enhanced reuse of software, and seamless integration, as specified in the Joint Vision (JV 2010) and the Advanced Battlespace Information System (ABIS) study. In the course of specifying and implementing this architecture, many lessons were learned and ideas were solidified. This paper gives an overview of the architecture effort, some lessons learned, and thoughts on the future direction of compositional software architectures from the perspective of this effort.

Overview DARPA’s Advanced Information Technology System (AITS) Architecture

A primary challenge of this effort is the development of an advanced adaptive and interoperable architecture which is based on sound engineering principles and industry standards, but at the same time is built on and responsive to technological advances, such as knowledge representation systems and mobile intelligent agents. Building on fundamental building blocks of object-orientation and distributed object computing, the architecture supports collaborative planning in an unreliable bandwidth environment, focused just-in-time logistics, battlefield and situation awareness, intelligent dissemination of information to the warfighter, coarse of action analysis, and integration with the simulation community. By providing an internationalized information grid spanning multiple echelons by utilizing a unified schema and ontology, the AITS architecture aims to provide the standards, infrastructure, and building blocks for future C4I systems.

Compliance with future versions of the DOD’s Joint Technical Architecture (JTA) and the DII Common Operational Environment (COE) is a fundamental requirement of the architecture. In fact, it is envisioned that this effort will be a primary motivator for future versions of the JTA and the DII COE. The initial architecture effort will support strategic ISO programs such as: Advanced Logistics Planning (ALP), Project GENOA, Dynamic Multi-user Information Fusion (DMIF), Joint Force Air Component Commander (JFACC), Advanced Joint Planning (AJP) Advanced Concept Technology Demonstration (ACTD), Joint Task Force (JTF) Advanced Technology Demonstration (ATD), and the Battlefield Awareness and Data Dissemination (BADD) ACTD.

The technology transition from ATD/ACTD to fielded systems is a complex and frequently costly task with entire systems or components of systems becoming part of either the DII COE, the Global Command and Control System (GCCS), or the Global Combat Support System (GCSS). DARPA has decided to focus effort on the development and implementation of a common architecture which facilitates ease of transition, promotes reuse, provides interoperability, and anticipates and easily accepts technological change in a cost effective manner.

The AITS Architecture is Component Based

The AITS architecture is an object-oriented service based architecture which uses the Common Object Request Broker Architecture (CORBA) to provide distributed object computing capabilities. It is an implementation of the Object Management Group (OMG) architecture (OMA). Common services provide capabilities to higher level domain specific horizontal and vertical services, which in turn provide capabilities to applications and users. Security is being built into the architecture via many mechanisms such as hardware, tunneling, cryptography, and OMG security service implementations (when available), with the implementation of security policy a major theme. This component based approach is used to achieve higher levels of reuse, interoperability, and capability. It also supports the concept of distributed planning and sharing of products via the common services. An example of this is a military plan. The capability to distribute and collaborate on a plan via common services is a powerful capability which is a cornerstone of the architecture.

Common services include the Data, Event, Collaboration and Communication Services. Higher layer servers include the Map Server, Situation Server, Plan Server, and Model Server. These services provide capabilities for distributed planning and decision making, situation visualization and assessment, coarse of action analysis through modeling, and intelligent dissemination of information to the warfighter.

A fundamental integrating technology within the architecture is the Common Object Repository (COR), which provides a common schema and ontology definition which spans the vertical domains. This common schema is being defined and managed by DARPA’s Object Management Working Group (OMWG) and provides a common language to communicate within and between projects.

The following figure provides a connection oriented view of the architecture and shows the various services, applications, and infrastructure.

�

In this view, we not only see a breakdown of the services which compose the architecture, but other relevant architectural elements. The colors indicate a relative maturity level with respect to actual implementation and integration: green -fairly mature, yellow - less mature but well understood, and red - still defining concepts. Components are also annotated with projects within DARPA ISO and ITO or the DOD which is having direct influence on the services. The data services component, for instance, is using the data and schema server from the JTF ATD project, the InfoSleuth (MCC) system from the BADD project, and technology from DARPA’s I*3 and Dynamic Database projects.

With respect to distributed computing, the architecture supports COM and ActiveX through a bridge (OMG compliant) to CORBA. This provides an architectural link to the desktop community. Java based programs can use the Remote Method Invocation (RMI) in order to have interoperability with the common services via IIOP, by utilizing Sun’s soon to be delivered RMI/IIOP bridge. The architecture follows the dictates of the Joint Technical Architecture which states that CORBA/IIOP is the common object bus and other technologies (RMI, ActiveX) must be bridged to CORBA.

Ideally, a high level of application interoperability can be attained through the use of a common services. The AITS architecture guidance is encouraging the reuse of fielded services. However, in our efforts, we have found several road blocks to this type of application integration. First, DARPA projects want to push the state-of-the-art in their domain areas. Using new and inventive technologies tend to make interoperability more difficult. Second, there are other systems, started before the architecture was defined which are not using the common services or schema. To provide an acceptable level of interoperability, a publish/subscribe service is also being provided which allows applications to dynamically communicate objects defined in the Common Object Repository.

The Advanced Logistics Program (ALP) is taking the lead in developing a dynamic component based architecture based on Java components and JavaBeans. Applications can be dynamically built and configured on-the-fly and have access to the rest of the services via RMI/CORBA/IIOP. The ALP design, together with BADD’s InfoSleuth’s project, is providing an intelligent agent based addition to the fundamental service-based architecture, providing a great deal of new capabilities to the AITS architecture.

Some Architectural Lessons Learned

Large Complex Collections of CORBA Objects such as Plans or Situations are difficult to implement using the current CORBA implementations due to performance problems. A mechanism for caching objects on the client side is needed under these circumstances. Acceptable performance requires the judicious design and use of CORBA interfaces, servers, and objects. The granularity of CORBA objects is an important design decision.

Smaller servers with a high level of cohesion are preferable to large monolithic servers. This is very important if reuse is an important goal.

Building agility and adaptivity, such as communications adaptivity, into applications, is very complex and difficult to attain in a distributed component environment. Servers need to estimate their requirements and activities before carrying out their functions. If an application must respond differently when bandwidth is limited, all of the servers and services must cooperate in this effort.

Security is a more difficult problem in a distributed object computing environment with little COTS help available. The servers must be aware of the security policy as it applies to each user (that it acts on behalf of) and the system as a whole.

New technologies tend to have a negative affect on interoperability within architectures. An example of this is the Java language and RMI. Applications who use newer technologies become less interoperable until the architecture and standards catches up to the technology.

Each part of overall architecture process: technical, operational, and system are important to developing systems that meet the requirements of the users. DARPA ISO is focusing effort in each of these areas. The technical architecture, for instance, must be responsive to the system and operational architectures if the systems built on the architecture are to meet their goals.

One of the big drawbacks of object technology, distributed object computing, component development, and other advanced technologies, is the level of technical knowledge required to implement the architecture and applications. Instead of making it easier for engineers to design and implement, developing in this type of environment requires highly technical and skilled personnel with considerable experience. In this respect, the technology has not delivered.

�Thoughts on Future Directions Of Component Architectures

Although the OMA and CORBA are powerful tools for building complex applications, as stated previously, it is a fact that expert programmers are needed in order to build them. What is needed is the ability for programmers and engineers to quickly assemble off-the-shelf components into complex applications using visual development tools. JavaBeans and the forthcoming OMG Component specification brings much promise in this area. Not only will components be more configurable but they will have a common packaging mechanism to simplify deployment and allow run time introspection as well as design time capabilities. Several DARPA projects within the architecture are actively developing JavaBeans applications that are dynamically configurable at run-time. If a visual tool were available to help in this process and a JavaBean/CORBA mapping were available as specified in the OMG Component spec, greater ease of development and greater flexibility could be attained. If these components could also be mobile and understand, to some extent, their environment, even more complex and intelligent systems could be developed. The DARPA ISO architects are moving in this direction by tracking the OMG Mobile Agent Facility RFP progress closely and investigating how to incorporate knowledge representation systems such as Cyc and tools such as Ontolingua, together with agent communication languages, within the architecture.

�

Summary

The AITS architecture defines the fundamental building blocks, standards, and guidance for component development for DARPA ISO programs. It supports distributed collaborative planning, automated replanning, focused logistics and execution, readiness, situation assessment, intelligent information dissemination and dynamic information and sensor fusion. The architecture, primarily a CORBA component based, distributed object infrastructure, supports common shared services, as well as a publish and subscribe mechanism. Implementing this architecture has provided many challenges such as processing large numbers of interconnected fine-grained CORBA objects, as well as providing high levels of interoperability as new technologies are integrated. The architecture is being expanded to include advanced capabilities including intelligent agents and dynamically built applications using JavaBeans. The level of expertise required to implement component architectures based on CORBA is constraining. The OMG is currently addressing this problem with their efforts in defining standard component definitions and interoperability with JavaBeans. Building to industry standards and adapting to changing technology, the DARPA AITS architecture is poised for the 21st century and JV2010.

