CORBA and Software Component Compatibility

Vincent Doerfler and Joseph Pemberton

ISX Corporation

2000 North 15th Street

Suite 1000

Arlington, Virginia

vinced@dc.isx.com

November 21, 1997

In this position paper, we present our views on a problem we call software component compatibility. With the recent advent of CORBA middleware products, the difficult task of connecting a distributed computing base has been replaced by the simpler task of interfacing each component to an ORB. This has greatly improved the efficiency of developing distributed software systems, but has accentuated and perhaps exacerbated the problem of software component compatibility.

We define software component compatibility as the problem of matching together a set of COTS (Commercial Off-The-Shelf) software components into a working software system. For example, if a software design includes elements such as an ORB and a persistent object storage facility, then the software component compatibility problem is to find an ORB and object database that can support the language(s) being used for the development, that are available for the operating systems and hardware proposed, and that are within the project’s budget. This last constraint is particularly important given the current high costs of ORBs and OODBs. The problem is further compounded when software component choices are limited by customer specification, to match a standard, or by the need to integrate a legacy application. This is the norm rather than the exception. An incompatibility or gap in interoperability between any software components will need to be patched with so-called glue software.

The software component compatibility problem thus becomes two subproblems. The first occurs at the system design level where the software engineer needs to choose software components, including middleware, that are to some extent compatible. The second is the software development required to bridge any incompatibilities or gaps in interoperability that resulted from the first problem. The problem of component compatibility is made more difficult by the rapidly evolving nature of the distributed computing marketplace. The rapid turn around and shifting content of the very popular Java language is perhaps the most extreme example of this moving target. Attractive due to its platform independent operation, new Java releases seem to appear every few months, with varying lag times while other vendors update their products to stay compatible with the latest Java modifications and new features. For example, does the new version of my ORB still work with JDK 1.0.2? Or does version X of the ORB for platform A support IIOP in order to talk to version Y of the ORB installed on platform B? The middleware patches to handle incompatible or semi-compatible components are essentially single-use software because the glue is unlikely to remain compatible with newer versions of the software components and middleware. The end result is that the need for in-house middleware development has been replaced by the challenge of solving the software component interoperability problem and consequent development of software-component bridges and glue.

We have experienced the thorniness of this problem on several recent projects. One project in particular involves installing a distributed information management system across several different platforms, including SCO UnixWare. Our goal was to design a system using CORBA middleware to make data on several legacy systems available outside of the host machine. We found only two ORB vendors supporting SCO UnixWare, while another two had formerly supported that platform but no longer did so. We can only assume sales did not justify supporting SCO, but if that’s so how can we be sure there will be any ORB for a non-mainstream platform or configuration? It seems we can’t be sure of such availability, which means there may always be a need to use earlier tools of distributed computing such as sockets or RPC to link an unsupported platform or configuration to a CORBA proxy. As recently as 18 months ago, our work on an earlier version of this project mixed CORBA middleware with ad hoc socket communications to a Java GUI, because the Java CORBA solutions were deemed too immature for our needs. Today the sockets are being replaced with Java CORBA, while the rest remains unchanged (from a middleware perspective).

A separate customer had an installed base of Windows 3.1 machines, which meant many of the software components we are most comfortable and confident with were immediately ruled out. Once again we developed a system with as much of the core using current middleware products as the required platforms could support, and then adding software glue to connect the rest. In this instance a central server was hosted on a Solaris machine. This means once the customer upgrades, we need only replace the glue software with more standard components to migrate the entire system away from Win3.1.

One large step to simplify the software component compatibility problem for distributed systems design which is almost complete is the inclusion of IIOP in all serious ORBs. This allows an ORB to be chosen for specific advantages, such as support of an uncommon but required platform or an early implementation of a useful CORBA Service, without requiring that it be used for the entire system, or indeed for any other machine at all.

In a related vein, we are eagerly awaiting implementations of more of the CORBA Services. They promise a great deal, but aren’t really here yet. ORB vendors, please provide them! They codify many of the base functions we need from systems, and once available will allow those functions to be utilized reliably across ORB boundaries. We are currently using the OMG CORBA Service specification to inform our designs of several general case, re-usable services, essentially our own implementations of the middleware we hope to see. But we are not middleware developers! These will tide us over until full implementations appear, but are really nothing more than a better grade of glue software, to ease interoperability and fill in the gaps.

In an ideal world, ORBs would include all the CORBA Services, would support all languages, and would be available on all platforms. Realistically, we believe that the software component compatibility problem will never go away. We do expect it to diminish as ORBs become more popular, more mature, and more available with respect to less common platforms. If not, then we predict a meta-middleware market will spring up where vendors will partner to supply commonly written patches and intercomponent glue between their products.

	�page �3�	�date \l �11/21/97�

