

Architectural Issues in COM/CORBA Bridging

Lowell Rosen

The MITRE Corporation

November 19, 1997

Overview

The Object Management Group's (OMG's) Common Object Request Broker Architecture (CORBA) and Microsoft's Component Object Model (COM) are two competing technologies that are being used for distributed computing. This paper examines alternatives for COM/CORBA bridging, and in particular, the choice of a local or a remote bridge location. This paper briefly reviews concepts for OMG Interworking and adds some observations based on the Web-for-the-Warrior (WFTW) Mission-Oriented Investigation and Exploration (MOIE) project. This paper represents the author's views and not necessarily those of The MITRE Corporation.

Computing Within the DOD

Within the Department of Defense (DOD) operational community, there is interest and efforts underway in migrating the user's desktop platform to the Microsoft Windows operating system (OS). Lower costs, wide user familiarity, and the popularity of many of the Windows applications such as Microsoft Office drive this interest. However, many of the DOD's mission applications, such as those available with the Global Command and Control System (GCCS), are Unix-based and require reengineering to extend those capabilities to the Windows desktop. A migration strategy is required that can make use of software that already has been developed and at the same time provide a good foundation for developing future applications. A heterogeneous Windows-Unix environment is likely to exist for the foreseeable future, and the Defense Information Infrastructure (DII) Common Operating Environment (COE) currently supports both OSs. The current DII COE build plan also includes some CORBA-based services. CORBA implementations exist for a wide variety of operating systems, including Windows, Unix, and mainframe OSs.

Microsoft's Component Object Model (COM), which has many things in common with CORBA, has proven to be successful with the Windows-only environment. Commercial components based on COM (Controls) have been available from third-party vendors for years. Microsoft Office products and many other Windows applications are tightly integrated with COM. For example, Excel spreadsheet users can easily access COM objects. A rich tool set for developing and working with COM components also exists. With Distributed COM (DCOM), Microsoft has extended the COM technology for components located on remote platforms.

Within a heterogeneous computing environment as described above, the present-day strengths of COM and CORBA are somewhat complementary. CORBA is cross-platform, while COM is an integral part of the Windows operating system and many of the common Windows applications. Both will figure to play a strong role in the future, and bridging the COM and CORBA worlds is a practical necessity.

OMG's COM/CORBA Interworking

COM and CORBA share many characteristics. Roughly speaking, COM interfaces are equivalent to CORBA interfaces. In addition, COM interface pointers are similar to CORBA object references. There is enough similarity in calling conventions and data types to provide a good level of interworking through mappings. For example, a Windows client (living in a COM environment) can interact with a CORBA object (target object) via a COM "view object", which provides similar interfaces and methods. Similarly, a client living in the CORBA world interacts with a COM target object via a CORBA view object. The client treats the view object as if it were the real object. The view object, in turn, transparantly provides the communications (e.g., Remote Procedure Calls) that connects with the target object. View objects are components in the COM/CORBA (and CORBA/COM) bridge.

�

The CORBA specification has recognized the importance of the bridging. The specification includes bi-directional mapping (interworking) between CORBA objects and COM objects that encompass both Automation and COM (Vtable) type interfaces for the COM object. Under the COM/CORBA Interworking (Part A) specification, the bridge is located on the Windows platform. For example, if the CORBA object is hosted on a Unix system, Windows-based clients use a local bridge component to access that CORBA object. A client running under the Unix OS will access a COM object through a bridge component that also is running within the Windows environment. OMG-compliant bridge tools are available from IONA Inc. (Orbix Desktop for Windows), Digital/BEA Systems (ObjectBroker Desktop Connection), and Visual Edge Software Ltd. (Object Bridge). Using these tools, it is possible to automatically create view objects from the CORBA Interface Design Language (IDL) and Microsoft's Type Library files that are associated with the target objects. In a closely related area, a number of companies have, or are developing Java Bean/ActiveX component bridging products.

Web-for-the-Warrior Project

The recently completed Web-for-the-Warrior (WFTW) MOIE project examined emerging web and component technologies. One objective was to examine (through prototyping) various alternatives for accessing Unix-based objects, similar to those which might be created by wrapping legacy applications. The WFTW testbed included a CORBA-wrapped database server with underlying tactical databases that followed the Contingency Theater Automated Planning System (CTAPS) and Ocean Surveillance System (OSS) schema. This database server, which was originally built using the Orbix 1.3 protocol under a earlier research effort, was eventually updated to Orbix 2.0 and was finally made Internet Inter-ORB Protocol (IIOP) compliant during this effort.

Using this CORBA database object, several demonstration prototypes were built in order to gauge the state-of-the-practice in Commercial-off-the-Shelf (COTS) tools and products, and to evaluate the interoperability of component architectures. Investigations included both Web-based approaches based on CORBA-to-Java mappings and an NT application built with Visual C++. Connectivity between the NT application and the CORBA database server was accomplished is several ways. Initially, C++ mapping code was generated (using the Orbix compiler) and inserted into the NT application. Later, in order to "lighten" the NT application, the same CORBA mapping code was moved inside a COM object wrapper that was created with the ActiveX Templete Library (ATL). The client could access this COM object with a similar interface as the CORBA database object. Method calls to the COM object were mapped to method calls to the CORBA database object. To enhance performance, a COM (Vtable) interface was used rather than an Automation interface. This also enabled the passing of complex datatypes, including structures. The COM server provides the bridging function that can be either executed locally on the client's platform or located on a separate Windows platform, thus creating the three-tier arrangement illustrated below.

�

Web-for-the-Warrior DCOM/CORBA Bridge

With this configuration, CORBA software does not need to be installed on the client platform. Rather, a client uses the built-in DCOM to connect to the middle tier, which in-turn makes the CORBA connection. Multiple clients can simultaneously access the same bridge platform and target CORBA object. After implementing the DCOM/CORBA bridge, the ORB was transitioned from the Orbix 2.0 protocol to IIOP without doing anything on the client platforms. All changes were isolated to the bridge platform and the CORBA server platform. Implementing DCOM/CORBA bridges on separate platforms can simplify installation and maintenance.

No attempts were made to quantify performance. In this particular experiment, the performance reduction was not noticeable. However, in general, the flexibility of a DCOM/CORBA bridge comes at some cost in performance, which may or may not be important depending on the speed of the network and the frequency of method calls. Multiple bridges and CORBA servers can be used for load balancing and added robustness.

Extentions to the COM/CORBA Interworking Specification

The current CORBA specification calls for the bridge components to be located with the client on the Windows platform. However, a recent joint draft submission (COM/CORBA Interworking Part B, September 1997) also considers locating bridge components on other (remote) platforms.

�

As with the WFTW research project discussed earlier, DCOM provides the connection between the client (and COM object) platforms and the bridge components. The draft submission proposes to use "DCOM value objects" as a way to help mitigate the performance degradation resulting from the additional network path. Under this concept, the view object on the COM side maintains cached data corresponding to the real CORBA object. Thus, any operations to read or change instance data are accomplished with local calls. Several companies have announced DCOM/CORBA bridge products.

Summary and Discussion

In summary there are two options considered for locating the COM/CORBA bridge components:

1)	Local Bridge (COM/CORBA). This extends the ORB to all desktop units that require access to CORBA objects or that serve COM objects to clients on Unix and other operating systems.

2)	Remote Bridge (DCOM/CORBA). This provides the access to the CORBA and COM services through separate gateway platforms that execute the bridge components.

These two options provide some interesting tradeoffs in performance, reliability, availability, maintainability, security, manageability, and scalability.

Performance. Remoting the bridge components adds an extra network path, which impacts performance. This may or may not be significant. If the transaction is completed with a few calls over a Local Area Network (LAN) (such as the WFTW database query example) the extra delays may not be important. For an application using many fine-grained components, the performance hit could be significant. Also, response will slower if multiple clients are simultaneously using a remote bridge, although this can be mitigated by using additional bridge platforms. The addition of "value objects" as proposed in the OMG draft should improve the performance of an application using a remote bridge. Location is by no means the only decision impacting bridge performance. For example, the use of COM (Vtable) interfaces rather than Automation interfaces significantly helps performance. Also, running a COM-to-CORBA bridge in process with the client (with a DLL) rather than out of process (with an EXE) provides significant performance advantages. Microsoft's Transaction Server is designed to broker stateless components and may be an option for hosting bridge components for large installations. In general, there is flexibility in configuring the location of COM objects. If performance using a remote bridge is inadequate, the bridge components can be moved to the client platform.

Manageability. The big advantage of a remote bridge is the potential for reduced administration, particularly in installations with a large ratio of Windows platforms (clients) to CORBA platforms (severs). With a remote bridge, CORBA does not need to be installed on each user platform. If, for example, the ORB protocol or object model changes, upgrades would be isolated to the bridge platforms and CORBA server platforms. Similarly, a client in the CORBA world could be isolated from changes in the COM design. The remote bridge concept will be facilitated by Windows NT 5.0 Active Directory (with the Lightweight Directory Access Protocol (LDAP)), which will enable centralized deployment and management of components and services across multiple computers. Management of components on the CORBA side is accomplished through the Interface Repository and other services.

Security. With a remote bridge, Windows platforms (client and bridge) would operate under NT security. In addition, the bridge and CORBA server platforms would require a CORBA security service. NT security and CORBA security would need to interface on the bridge platform.

Other Considerations. These and other considerations including fault tolerance, load balancing, and scalability need to be further addressed. A more in-depth assessment of the potential of remote bridges for interworking between the COM and CORBA would be useful, particularly in light of some of the distributed services that will be built into NT 5.0. The impact of the forthcoming extensions of COM (COM+ in 1999) also needs to be considered.

The alternatives for COM/CORBA bridging are important considerations in engineering (and reengineering) future mission applications.

