Perspectives on Component-Based Development for Command and Control Systems

Randall W. Lichota, Hughes Information Technology Systems*

Abstract

The development of complex, distributed systems from reusable components has been characterized as elusive due to persistent technological and market barriers. While the maturity of CORBA and ActiveX have provided optimism that these barriers will diminish, concerns remain as to whether a critical mass exists to support the development of reusable components. This paper focuses on one application domain for which component development is already underway: command and control. A brief description of this effort is provided in the context of the Portable Reusable Integrated Software Modules (PRISM) program and its successor, the Command and Control Product Lines (CCPL) program. CCPL is spearheading the development of reusable domain-specific software components through the use of domain modeling, a common operating environment, and generic component-based architectures. However, this will only happen if commercial middleware, frameworks, and development environments are sufficiently flexible to meet the requirements of modern command and control systems. This paper highlights lessons learned from work undertaken by PRISM and CCPL and presents some perspectives on current industry directions.

Background

Early in 1992 the PRISM Program at the U.S. Air Force’s Electronic Systems Center (ESC) began the development of an operational prototype intended to meet a common set of command center requirements. The architecture of the prototype, known as the Generic Command Center Architecture (GCCA), defined the components from which the prototype was implemented. The GCCA was represented by a series of layers, in accordance with the DISA CIM and later TAFIM documents. Within each of these layers the GCCA defined a set of software components which would typically be provided in most command centers. The GCCA was characterized by a set of architectural styles, component requirements and component descriptions. The latter included Application Program Interfaces (APIs) and associated semantics.

The GCCA incorporated the following set of architectural styles: distributed processing, event-based system with call backs, client/server and peer-to-peer message passing. The client/server style was used most extensively by command center applications responsible for processing operator requests to display stored information. In an effort to meet command center performance requirements a custom in-memory database was maintained for each operator display. Message passing was used to transfer information received from external systems to the component needed to process and/or display the information. With this approach, applications were able to send and receive messages without prior knowledge of the location of other sender(s) and receiver(s). In addition, message-passing was used to coordinate updates of the local databases with updates to a system-wide database implemented via a commercial DBMS product.

Most components of the GCCA were implemented as Commercial Off -The-Shelf (COTS) or Government Off-The-Shelf (GOTS) products. Relatively few were custom developed. Those components that were implement from COTS or GOTS products took one of three forms: toolkits, source code modules, and executables. Toolkits were similar to software libraries in that a command center application would be written against the toolkit APIs and then compiled and linked with supplied object code. For the most part, source code modules were usually produced via code generators. Executables varied in form. Some executables consisted of simple binaries that represented a run-time component. Integration with these components was accomplished by writing wrapper software that would utilize standard UNIX I/O. Other executables included a set of software bindings that allowed applications to be integrated in accordance with a specified API. Still others provided access to an internal scripting language that allowed the product to be configured and extended to better meet processing and interface requirements.

Lessons Learned

One of the goals of the GCCA was to support multiple implementations of a given component using different Off-The-Shelf products. This would allow developers to select an implementation which best matched the system requirements. For example, one mapping product used in the GCC prototype provided extensive features and geographic detail at the cost of less than real-time performance. By contrast, another product provided near real-time performance but with relatively limited map detail. Either could be utilized by integrating each product with wrapper code which translated calls to component services into calls to services provided by the underlying product. Consequently, software applications written against a component’s interface would not need to be modified to use different component implementations.

In addition to the mapping component, interchangeable implementations were developed for the DBMS and Inter-Process Communication (IPC) components. In both cases it was determined the development of the wrapper code was more difficult than first envisioned. The DBMS wrapper, in fact, evolved into a separate component called the Database Broker (an initial custom implementation of this component was superseded by the appearance of commercial database brokerage products). The IPC wrapper development was initiated in an effort to provide necessary functionality which was lacking in commercial products. For example, a commercial message passing product provided robust queuing facilities but required extensive programming to implement fail-over capabilities. By contrast, fail-over could be demonstrated quickly with an early implementation of DCE which, however, did not support the required message queuing.

In addition to functionality, other factors that often need to be considered when choosing between component implementations are reliability, security, performance and interoperability. To systematically assess how a product addresses these factors within the context of a component’s requirements a five step process was developed. Known as the Product Examination Process, it begins with the development of product testing criteria tailored to address the requirements of each architectural component. Using these criteria, products are identified and subjected to a paper analysis. If a product is considered sufficiently suitable it is first tested in isolation. If the results appear promising, the product is then integrated into a prototype and then subjected to additional testing. Finally, the prototype is integrated with external systems, subjected to interoperability testing, and used to support exercises. Note that during any of the testing phases the vendor is kept informed about the results. In some cases, deficiencies identified during testing have resulted in the release of re-implemented products which provide enhanced capabilities.

In practice, we have found that security and reliability are sometimes in conflict with system performance requirements. This has been particularly notable for products designed to satisfy Multilevel Security requirements. These products often must be integrated in a specialized environment constructed from a high assurance operating system and components.

System that fall within the command center domain may be considered to operate in soft real-time. Our experience with the GCC and subsequent derived prototypes has led us to conclude that the following features need to be supported for these types of systems:

 Separation of resource management policy and mechanism

 Full access to system level resources

 Components optimized for performance

 System configuration tailored to enhance performance (e.g., dedicated equipment) 	

 Distributed time management

 Load shedding capability

 Quality of service for selected threads

 Enhanced fault tolerance

Conversely, it was determined that there was not a need for features that support more stringent real-time requirements such as admission control and constraint enforcement..

Prospects for the Future

With the prospect that future Air Force campaigns will contain joint/coalition elements, the need for interoperability becomes very important. During the PRISM program the DoD began to address this need by defining a Common Operating Environment. The Defense Information Infrastructure Common Operating Environment (DII COE) is the culmination of this effort. The DII COE provides the infrastructure and common support services for command and control systems. The successor program to PRISM, CCPL, extends the DII COE to address the requirements of selected operational domains. For each domain an architecture is defined to guide the development of a command and control product line. Each architectural component corresponds either to a component of the DII COE or is determined by the requirements of its respective operational domain. It is anticipated that the latter set of components will be implemented as COTS, GOTS, or contractor supplied Off-The-Shelf products.

Key to the success of CCPL will be the creation of these component-based architectures. Initial efforts have focused on adapting the Unified Modeling Language (UML) to the process of domain engineering. The construction of domain models and architectural views using UML notation appears promising. The actual development of these architectures is envisioned as an iterative process involving the participation of CCPL contractors, users, and Air Force Program Office representatives. The ESC Chief Architect’s Office (CAO) provides a focal point for the development and validation of domain-specific architectures for ESC systems. The Object Management Group has also established special interest groups to address issues of concern to organizations with real-time, security, and command and control interests. A good first step is the work being done by the OMG to establish a standard set of object services across horizontal domains.

In addition to the creation of suitable architectures, the existence of a supportive technological and product base is necessary if CCPL is to achieve the cost and efficiency advantages envisioned by product lines. Key technologies include object-oriented development, middleware, and web/internet technology. Web and internet technology offer the promise of mobile code along with simplified access to data sources. Object technology has already fostered the development of class libraries, frameworks and products which provide standardized interface specifications. For the most part, these have been developed for horizontal domains such as document interchange and user interface. The next step is to extend these technologies into vertical domains such as command and control. The advent of UML provides notations useful for designing and describing the interfaces and behaviors provided by libraries and frameworks.

Considerable progress has been made in the evolution of middleware. There currently exist architectures and interface specifications intended to support development of large, complex distributed systems. However, architectures for distributed command and control systems need to be validated early to ensure that performance, reliability and security requirements are adequately addressed. This can be mitigated by early development of architectural models, iterative prototyping based on these models, and testing of products identified as potential component implementations. In particular, product testing should include benchmarks driven by projected operational scenarios. System generators and a new generation of executable specification tools may provide a means for rapidly combining test results with architectural constraints to establish system performance characteristics.

Several challenges must be addressed, however, if commercial products are to fulfill the promise of component-based development. CORBA specifications, for example, define interfaces and mappings to individual programming languages. Efforts to provide binary compatibility have led to the creation of powerful yet incompatible environments. To provide interoperability, gateways have been developed that allow operations to be invoked for objects created in different environments. Unfortunately, the combination of different platforms and environments has sometimes led to an excessive layering of translation software, resulting in inadequate performance. In addition, software products may assume the availability of system resources or may prescribe the use of specific versions of development tools (such as compilers). When these are in conflict with component implementations, unanticipated upgrades or product substitution are frequently the only courses of action. Standardization of languages and run-time environments are important necessary conditions for cost effective adoption of component technology.

* This work was sponsored by Air Force Materiel Command’s Electronic Systems Center/DIB Hanscom AFB through contract numbers F19628-92-C-0006 and F19628-97-D-0012.

