Achieving Ilities

Robert E. Filman

	Advanced Technology Center	West Coast Laboratories

	Lockheed Martin Missiles and Space	Microelectronics and Computer

	3251 Hanover Street O/H1-41 B/255	Technology Corporation

	Palo Alto, California 94304	2099 Gateway Place, Suite 450

		San Jose, California 95110

	bob.filman@lmco.com	filman@mcc.com

This paper discusses the use of aspect-oriented programming technology to impose desirable system properties on component-based, distributed systems.

Problems of compositional architectures

Traditionally, software application development has been a monolithic process. An organization building a software system presumed to know how it wanted that system to behave. The requirements for that behavior would flow down to the construction of the underlying modules. Since the modules were being built specifically for the system in question, it was “straightforward” to get their developers to obey proscribed rules and conform to defined standards. To the extent that the system used an externally provided component such as a GUI or database, the behavior of that component would be ascertained and the use of that component within the architecture of the system shaped to match the actual behavior.

Life has gotten more complex. The future, if not, the present, is, after all, components. Technologies such as CORBA and HTML provide the glue for building applications from components. We have the perpetual promise that someday a market for components of finer granularity than “the database” will emerge. We want to develop systems from components. However, we don’t want the artifacts of a particular component manufacturer to permeate our designs, rendering us eternally dependent on the whims, demands and destiny of that vendor. We want components that obey our policies; we don’t want to have to pervert our systems to match the policies of the components. And we want ways to federate existing systems while still maintaining overarching rules and procedures.

Distributed systems introduce even more complexity. Developing distributed systems is in itself a more difficult task because:

Distributed systems are non-deterministic. Programmers have a hard enough time figuring out the behavior of a centralized, serial system. Tracking lots of concurrent possibilities exacerbates debugging. Similarly, it can be hard to assure that of the many things that are eligible to receive resources in a concurrent system, the resources go to the most worthy.

Distributed systems are prone to incomplete failures. As Leslie Lamport has remarked, a distributed system is one where the failure of a system you didn’t even know existed can impact your work. In a conventional, single process system, failures terminate the program. One didn’t need to write a recovery from a procedure call that did not return, because the catastrophic failure of the equipment of the called procedure was a catastrophic failure of one’s own equipment. In a distributed system, one can try to do something and then have it just not happen (or even partially happen). The caller will still be running and will require mechanisms for dealing with this situation. Such mechanisms can be hard for the ordinary programmer to create.

Distributed systems are less secure. When the elements of a system are distributed and communicate over more-public channels, there are greater opportunities for intrusion and subversion. Getting security right is a task that often seems to elude security experts, no less ordinary application programmers.

What can be done to simplify distributed computing?

We can provide mechanisms so that computing with distributed elements does not itself require extending the intellectual space of programming—programming distribution can be made look like ordinary coding.

Concurrent algorithms are genuinely difficult to program correctly. We can provide implementations of such algorithms and arrange to have them invoked appropriately, shielding the user from their interactions.

We can’t hide all the warts of distributed computing. However, we suggest below mechanisms that can substantially reduce the pain of developing distributed systems.

Requirements

What kinds of systems do we want to build? Our applications should exhibit reliability, security, scalability, extensibility, manageability, maintainability, interoperability, composability, evolvability, survivability, affordability, understandability, and agility. (We note we’ve forgotten a few.) Let us label these qualities ilities. The keen reader is likely to ask, “So what exactly do you mean by, say, reliability?” We take the point of view that reliability is what the system specifier says it is. This person makes some requirements about system implementation that, if followed, will realized reliability. Some ilities are thus manifestations of properly defined and implemented requirements.

To understand what ilities we can achieve, we first must consider the possible kinds of requirements:

Functional. Functional requirements deal primarily with the input-output behavior of a system. For example, a requirement that “The application shall have a way for the user to save the current state of processing,” is a functional requirement that is likely realized in a specific module that implements a menu selection with code that writes to the disk. There is usually a one-to-one (or one-to-small-finite-number-of-places) mapping between functional requirements and the code modules. Conventional code development processes handle functional requirements well.

Aesthetic. Aesthetic requirements are such that satisfaction is in the eye of the beholder. Lacking artificial intelligence, automation has nothing useful to add to a requirement such as “Use meaningful variable names.”

Systematic. Systematic requirements pervade the behavior of the system, but can be realized by “doing the right thing” in “all the right places.” For example, a requirement that all communications be encrypted with 128-bit DES can be realized by encrypting the data around every communication call (and decrypting around every reception.) This is an issue of good programming hygiene. If communications calls are recognizable system elements, one could presumably write a system that read a system’s source code and checks to see if such a requirement is satisfied. [1] (One could even write such a system to automatically fix the ones that weren’t.) The primary difficulty in satisfying systematic requirements is getting all the programmers to behave systematically. We have considerable leverage in automating systematic requirements and the ilities that follow from them.

Combinatoric. Combinatoric requirements constrain the complex interaction of parts within a whole. Determining the satisfaction of combinatoric requirements is typically computationally intractable. An example is a requirement that all requests be responded to within five seconds. Given a presumed request distribution load, the worst-case response time is an analytical question. However, actually determining whether a system satisfies this requirement is the satisfaction of the requirement is likely to be computationally arduous.

Achieving ilities through controlling communication

Under the auspices of MCC, the Object Infrastructure Project is developing mechanisms to make distributed computing substantially easier. The intellectual thesis of this work is that certain interesting ilities (security, reliability, manageability, quality of service) can arise by proper manipulation of the communications between components and the significant events of an object’s lifecycle.� We are currently creating a set of tools to realize this transformation from specified ilities to controlled communications, a reference architecture (set of rules defining component interactions) and set of frameworks (realizations of that architecture in particular environments) to demonstrate this thesis.

A key observation of this work is that communication is not confined to the “actual text of a message” (for example, the procedure being called and its arguments) but also allows arbitrary additional annotation---we presume to control both sides of the communication act.

Our efforts can be seen as an instance of aspect-oriented programming [2] in that we are separating the tasks of creating the actual domain application from the code that produces security, reliability, etc. and realizing (through proprietary mechanisms) the weaving together of this code appropriately. Our efforts can also be seen as an instance of the perpetual effort in computer science to raise the “level” of supporting substrates. Not that long ago, writing a graphic user interface to a program would consume 80% of the programming effort. Now graphic user interface builders have turned that task to child’s play. Not that long ago, developing a distributed system required work close to the level of network protocols and sockets. Tools such as CORBA have enabled programmers to code to the specification of objects and methods. But realizing elements such as security or reliability are still the responsibility of the application programmer, and likely to be done incorrectly or incompletely by most such programmers. (A programmer expert in the workings of a satellite flight control system or medical database is unlikely to also be expert in security and replication algorithms.) This effort can thus be seen as a way to produce the “next generation” of CORBA-like systems [3], where the programmer no more worries about how to achieve security than she does about mapping the location of a mouse click to a window’s button.

Ilities in practice

This section considers, for each of our target ilities, how communication and lifecycle control can be used to affect or realize that ility, and the limits of that realization.

Security

Security (at least in a software sense) is primarily a combination of access control, intrusion detection, authentication, and encryption. Controlling the communication process allows us to encrypt communications, reliably send user authentication from client to server (and pass it along to dependent requests) and check the access rights of requests, all independent of the actual application code. Watching communications provides a locus for detecting intrusion events [4] (though not, of course, specifying the actual algorithms for recognizing an intrusion.) These mechanisms can all be imposed on a component-based system by controlling its communications. (Such mechanisms cannot, however, prevent subverting a system’s personnel, tapping communication lines, brute-force cracking of encryption codes, or components that cheat by opening their own socket connections.)

Manageability

OSI defines five elements to system manageability: performance measurement, accounting, failure analysis, intrusion detection, and configuration management. The first four of these can be implemented by generating events in relevant circumstances and directing those events to the appropriate recipients. To the extent that the semantics of these events can be tied to communication acts (e.g., each time a routine is called, a micro-payment for that routine is processed, or the trace of inter-component messages is sent to a system’s debugger) then they can be realized through external communication controls. Configuration management is partially an issue of object lifecycle. Communication control can be used to dynamically determine if appropriate configurations are in use.

Reliability

Our primary experiments in supporting reliability have centered on using replication for reliability [5]. Replication algorithms typically need to send copies of messages to replicants, but our work has also revealed that message replication is insufficient for practical application replication. Rather, the application needs to express its operations in symbolic terms, not in terms of addresses in a specific replicant’s address space.

Similarly, we believe transaction management would (practically) yield to communication control only if the managed objects provide the necessary primitives (locking and rollback.) These points illustrate the limitations of communication control, even in the presence of well-defined algorithms.

Quality of service

By quality of service we mean to encompass a variety of requirements for getting things done within time constraints. The real-time community recognizes two varieties of real-time systems, hard real-time and soft real-time. Hard real-time systems have tasks that must be completed at particular deadlines, or else the system is incorrect. Soft real-time systems seek to allocate resources so as to accomplish the most important things. To achieve hard real-time systems, one can either reserve resources and plan consumption or use some kind of anytime algorithm. Aside from that latter, somewhat esoteric choice, hard real-time requires cooperation throughout the processing chain (for example, in the underlying network), for the promise of particular service can be abrogated in too many places. That is, you can’t get hard real-time unless you build your entire system with that in mind. It’s a combinatoric requirement.

Soft real-time quality of service is amenable to several communication control tactics. These include calling the underlying system’s quality of service primitives, using side-door mechanisms to efficiently transport large quantities of data (e.g., opening a socket to send a movie, thereby avoiding CORBA coding and decoding), using queue control to identify the most worthwhile thing to do next [6] and by choosing among multiple ways of problem solving. All of these except the last are well within the scope of communication control, and if the application supplies the alternative problem solving methods (either by replicating the problem solving sites or providing genuinely different algorithms) the communication control mechanism can learn (based on historical timing data and communications with other clients) the most efficient problem solvers.

Concluding remarks

We have argued that high-level, desirable system-level properties can be achieved in a component-based system by systematically controlling the inter-component communications and component lifecycle. Our initial experiments have lent credence to this hypothesis, subject to the caveats that some algorithms (e.g., transactions) require cooperation on the part of the application, and that our desire for system-level properties (e.g., security) must be kept within the range of definable mechanisms. Our work continues on developing the mechanisms to automate this process and testing our thesis.

Acknowledgments

The ideas expressed in this paper have emerged from the work of the MCC Object Infrastructure Project, particularly Stu Barrett, Carol Burt, Deborah Cobb, Phillip Foster, Diana Lee, Barry Leiner, Ted Linden, David Milgram, Gabor Seymour, Doug Stuart and Craig Thompson.

My thanks to Diana Lee, Ted Linden, Gabor Seymour, and Doug Stuart for comments on the drafts of this paper, and to Southwest Bell, Raytheon TI Systems, Lockheed Martin, Motorola, DoD Health Affairs Clinical Business Area, NASA Ames Research Center, and the Defense Advanced Projects Agency for their support of this work.

References

[1]	Robert E. Filman, "Applying AI to Software Renovation," Automated Software Engineering, Vol. 4, No. 3, July 1997.

[2]	Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean-Marc Loingtier, and John Irwin “Aspect-Oriented Programming, ” Xerox PARC Technical Report, February 97, SPL97-008 P9710042 http://www.parc.xerox.com/spl/projects/aop/tr-aop.htm

[3]	Craig Thompson, Ted Linden and Bob Filman, “Thoughts on OMA-NG: The Next Generation Object Management Architecture,” Presented at the OMG Technical Meeting, Dublin, Ireland, September, 1997. http://www.mcc.com/projects/oip/next_oma.html

[4]	Robert Filman and Ted Linden, “Communicating Security Agents,” The Fifth IEEE-Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises---International Workshop on Enterprise Security, Stanford, California, June 1996, pp. 86-91.

[5]	Stu Barrett and Phillip Foster, “Turning Java Components into CORBA Components with Replication,” submitted to OMG-DARPA-MCC Workshop on Compositional Software Architectures, Monterey, California, January 6-8, 1998

[6]	Diana Lee and Robert Filman, “Verification of Compositional Software Architectures,” submitted to OMG-DARPA-MCC Workshop on Compositional Software Architectures, Monterey, California, January 6-8, 1998

� These ilities were selected by a committee of application domain experts long before the mechanisms discussed here were invented. A fifth requirement for our framework, scalability, can be seen as a combinatoric property of a system and is not amenable to communication control.

Achieving Ilities		� DATE \@ "MM/dd/yy" �11/24/97�

	� PAGE �1�

