Integration Techniques Approaches

Christian Zeidler and Bernhard Malle

Asea Brown Boveri AG,�ABB Corporate Research Center,�Speyerer Strasse 4,�D-69003 Heidelberg�Germany

E-mail: (christian.zeidler|bernhard.malle(@decrc.mail.abb.com

�
Abstract

Creation of high quality products requires a sound base engineering process. The improvement of time to market time and reduction of engineering as well as production costs requires a good and seamless tool support for the according engineering process. Nowadays tools and technologies undergo rapid changes, the complexity of engineering tools and the cost of ownership rise continuously. Therefore the only feasible way to establish a flexible and evolutionary satisfaction of the engineering needs is to relay on an architecture which enables to exchange tools and introduce new ones without changing the overall integration metaphor. However the focus of our investigations is to come up with long lasting but adaptable solutions instead of always exploiting newest technology.

Introduction

Object technology has reached a stage which offers many new promises for its use in business and engineering applications. It brings solutions to the technical problems which the IT community has faced for many years: interoperability between heterogeneous hardware and software systems and evolution of IT systems to support changing business requirements. The distributed object paradigms, such as CORBA, ActiveX/DCOM, and Java, as well as the guidelines of the ISO/ITU standard on Open Distributed Processing (ODP) provide a sound basis for building enterprise applications [ODP 95]. However, in spite of the benefits which object technology (OT), high communication bandwidth and standard middleware solutions could bring, there are still many problems which prevent wide use of this technology within and among enterprises.

As a result, the focus of the IT community is gradually shifting towards providing support for the use of distributed OT for a wide range of business and engineering applications. This includes a commonly accepted enterprise language for the description of enterprise applications, suitable object models and the underlying distributed infrastructure, as a 'business bus' for enterprise wide applications.

As this is naturally true also for ABB, it has been tried within several investigations to explore domain specific approaches. They target to provide an integration platform powerful but easy to use for a long term deployment.

We describe first ABB’s working scenario followed by a description of generic features of integration approaches. Next we give an overview of several engineering domains and corresponding integration approaches, including selected examples of application integration best practises.

We conclude this paper with a summary of presented approaches and an outlook to ABB’s next steps.

ABB’s engineering domain

ABB is a de-centralized, world wide electrical engineering company providing its customers with a complete spectrum of products ranging from power plants, power distribution systems, and industrial and building systems. The joint venture between ABB and Daimler-Benz (Adtranz) provides rail transportation products ranging from people's movers to high speed trains. Approximately 220,000 employees are distributed in more than 1000 different companies in over 130 countries.

There are many different products, product mixes, and product systems offered by ABB. In order to maintain its lead in large, complex product development or project execution initiatives it has become clear that a high degree of engineering application integration is necessary to remain competitive in today’s and future markets. Figure 1 depicts the extent to which we believe that engineering application integration will play a role in the future. The integration strategy must truly integrate the engineering tools vertically (within the technical disciplines) and horizontally (across the entire engineering and business value chain).

The identification and acquisition of mature IT are the basis on which we are planning and developing our integration strategy. We have recognized that the generation, management and distribution of information during product development and project execution are the key to successful completion of such efforts.

ABB’s corporate research organization has the responsibility to identify and to transfer the mature IT technologies, methods, and best practices into the companies’ business units. Much of the information presented here resulted from joint R&D efforts between corporate research and business units.

Requirements for Integration

We outline here some key requirements resulting from many efforts concerned with engineering application integration.

Basic Requirements for Tool Integration

Sharing of information and information exchange among multiple tools and users; providing the same information for all integrated tools at the same time; preservation of data consistency.

Change control and Configuration management; efficient support for handling the large numbers of engineering solutions and variants.

Heterogeneous environments; solutions have to be based on technology available on multiple platforms/target systems.

Access and security issues; definition of access rights to all engineering data and creation of user profiles is to a large extent application specific.

Process support; support for guidance of users and their collaboration as a team.

Distribution support; distributed engineering support is required today, particularly by de-centralized, globally distributed companies.

Hypermedia/Multimedia support (user interface); effective collaboration of engineers results in utilization of all human perception abilities.

Openness; flexibility and utilization of existing and emerging standards.

�

Figure � SEQ Figure * ARABIC �1� ABB engineering process integration across the entire enterprise value chain

Aspects of Tool Integration

According to [Schefström93] we distinguish three kinds of integration models.

Integration of Control: The control integration influences primarily the communication abilities. Aspects such as immediate notification of changes, selective aspects of communication with a particular tool, and granularity aspect of communicating changed circumstances with high precision are of major interest.

Integration of Data: The data integration aspects determine the degree to which data generated by one tool is made accessible to and understood by other tools. The most common approach to achieve data integration is to define one common data model for all systems involved. One of the probably best known approach in this area is the STEP standard (ISO 10303). In the discussion below we will present how we are trying to introduce data integration in our systems with the help of a PDM system and possibly STEP.

Integration of Presentation: The integration of user interfaces defines the degree to which different tools present a similar external look-and-feel, and behave in a similar way in similar situations.

These approaches to tool integration are orthogonal in functionality and can be regarded independent from each other.

ABB Integration Experience

Within ABB there are numerous examples of engineering tool/application integration initiatives that cover a part or several parts of the enterprise value chain depicted in � REF _Ref391992727 * MERGEFORMAT �Figure 1�. We have chosen examples of these efforts where distribution and/or object orientated approaches have been utilized to provide application integration. In the following, we present three different approaches emphasizing: a) presentation integration, b) data integration, and c) control integration.

Control Integration - Light Coupled Object Broker approach

The main goal of the Light Coupled Object Broker (LCOB) approach is to allow flexible integration of appropriate subsets of the large number of tools in use. This section describes an example of the control aspect of application integration. One of the important goals is support of flexible product configuration including for many of the tools to be able to work as stand-alone tools. The focus of LCOB is clearly on providing a coupling which is as loose as possible. LCOB executes no engineering tasks. It is up to the tools to use the interface provided to communicate as necessary for achieving tasks with cross tool dependencies.

The LCOB architecture is based on a concept called Engineering Object (EO). An engineering object represents a physical or virtual object which is described by different types of data called aspects. It thus can be regarded as a container for engineering data which are grouped into aspects. An example of an engineering object is a valve which can be described by different aspects such as requirement data, design data, implementation data, or the position in a functional, location or product structure.

There are usually different tools that operate on the different aspect types. Furthermore, the aspect data often do not adhere to the same data model. LCOB takes this into account by providing an architecture based on aspect systems connected by an light coupled object broker.

Basic features provides by the LCOB concepts are base on few but expressive and power full characteristics:

Standard API - Start, Stop, Print

Dynamic method registration to the LCOB

flexible event subscription for specific object events

Architectural Overview

Figure 2 depicts the overall architecture of an LCOB environment. The main parts are the single engineering subsystems (aspect systems) and the backbone (light coupled object broker) which enables applications to interoperate with each other.

An aspect system is responsible for implementing a certain type of aspect. It comprises one or more tools that operate on aspect system specific data. Examples of aspect systems are the structuring and navigation tool, a mechanical/electrical CAD tool, or a control programming tool. The data is usually stored in a database or in a file system. The data storage normally resides on a remote machine (data server), from where it is directly accessed via SQL*Net, FTP or NFS. In this way clients running on different PCs can share the same aspect data. However, aspect data of one aspect system cannot be directly accessed by another aspect system. For the exchange of data between different engineering stations the light coupled object broker has to be used.

Aspect systems communicate with each other by requests via the LCOB. The LCOB uses its own database to broke a request to the right aspect system.

The interfaces of aspect systems are simple and there are only few dependencies between aspects systems. This simplifies the integration of a wide range of different tools - even tools purchased from the market. Tools can be integrated locally by other organizations and scaleability is addressed since tools can be easily added and removed. So the demands for integrating a new aspect system are not very high - however integration is done on a relatively low semantic level. If a tighter integration is needed, tools can be grouped within the same aspect system where the same database system can be accessed.

� EMBED Visio.Drawing.4 ���

Figure � SEQ Figure * ARABIC �2� The LCOB architecture

Backbone - LCOB

The LCOB provides a set of services that allows one aspect system to issue requests to other aspect systems. The interface of the LCOB is very generic. The command, the command receiver as well as the command parameter can be constructed at runtime and passed as parameters of the LCOB interface. The LCOB forwards a command by invoking one of the services of the interface an aspect system provides.

From a conceptional point of view, the LCOB is similar to other object-oriented middleware technologies, e.g. DCOM or CORBA. Currently we are investigating how which technology could offer the best implementation basis for that concept.

The current LCOB is available only as a Dynamic Link Library (DLL). So it supports in-process communication between applications on one PC but does not give any provisions for local or distributed communication. Furthermore, a request can only include one recipient.

The Notification Framework

Applications working simultaneously on a common set of engineering object have to communicate changes they have made. Therefore the different Tools integrated into the engineering environment have to exchange different notifications. That can be either notifications from the same Application or notifications from other Applications running within the same Installation�.

The notification mechanism should be independent from the type of notification transferred. A Tool is able to define new notifications, without influencing other aspect systems (sub-systems) in the configured engineering environment. To receive notifications of a certain type, a Tool has to subscribe itself for the notification at working domain. The notification framework consists of Participants, Events and Interests, which are described in the next paragraphs.

Participants

Participants are the instances, that participate at the notifications transferred within the Installation. Participants consume and generate events. The notification service receives events from one participant and transmits these events to the remaining participants, if they have a subscription for the event (see below).

A participant is uniquely identified within the Installation through its application ID, its tool ID and its project ID. During startup of a tool, the basic tool information is passed from the Tools Manager. The basic tool information contains basic startup information for the tool, e.g. the database to work on and the participant the tool represents. The tool identifies itself with its participant during communication with the notification service. Furthermore, the basic tool information contains a list of all the other available participants within the same project, and the short name of the participant. The participants are distinguished by a unique identifier.

� EMBED Visio.Drawing.4 ���

Figure � SEQ Figure * ARABIC �3� Overview of the Tool Integration Framework

Events

Events are used to inform other participants about certain actions taking place within one Tool (e.g. update events, context selection). Events are transferred to the notification service, who transmit these events to the remaining Tools that have a subscription for that event.

An event is described through the sending participant, an eventID and an additional Parameter. Since the event is transferred cross the process boundaries, several restrictions appear for the additional parameter of the event. The additional parameter is represented through the class CCAnyParam, which is able to transfer the types stated below over the process boundaries. The class CCAnyParam consists of a typeCode, representing the datatype transferred and a value pointer holding the data to transfer. For the following datatypes cast and = operators are provided, to store a value into the CCAnyParam and to retrieve a value out of it:

unsigned char

short

long

unsigned short

unsigned long

float

double

const char*

BOOL

os_reference

CString

CCBinary

CObject*

In the OLE version, the CCAnyParam transfers its contents via the process boundaries with the help of the MFC’s archive functionality. The contents of the CCAnyParam are serialized into a CMemFile and the buffer of the memory file is transferred via the process boundaries, where the contents can be restored. If the CCAnyParam contains a CObject*, the objects Serialize() function is called to archive the object.

For the CORBA version the any-type will be used to realize this functionality.

Update Events:

Update events are defined for all central objects of the domain object model. The additional parameter of the update event is the os_reference to the changed object. The following naming convention for update events is proposed:

TI_EVENT_<objecttype>_<action>

e.g.

TI_EVENT_FUNCTION_CHANGED

TI_EVENT_FUNCTION_MODIFIED

TI_EVENT_FUNCTION_CREATED

Context Select Events:

Context Select Events are used, to inform the other Tools, that the user likes to view the assigned objects in another Tool to the particular object in the current Tool. Context select events contain as additional parameter the os_reference of the object, that the user likes to have context selected. The events have to be exactly defined, if the design of the domain object model has been finished.

Interests

Interests are used, to indicate that a Tool wants to receive a certain type of event. Interests define a relationship between sources of events and event ID’s. During startup of a Tool, the Tool has to subscribe at the notification service for certain interests, indicating that the Tool likes to receive events of the specified type. Subscriptions can be made explicitly for a participant, for all participants in the same project, for all participants, which are instances of the same tool or all available participants. Which participants are available in the system is contained in the basic tool information, which is passed during startup of the tool.

To each interest, a callback function is specified, that should be invoked, if the given event has been received from the Tools Manager. The call back functions must be implemented in the class CCEventCallback or derived classes. The prototype for the callback is as follows (pointer to a virtual member function of CCEventCallback):

typedef void (CCEventCallback::*callbackFn)

	(LONG eventID, CCParticipant* eventSource, CCAnyParam* eventParameter)

The association between Interest and the callback functions (=InterestHandler) are stored in the Interest Map. If an event has been received, the request handler looks up the assigned callback function in the interest map and invokes the handler function, passing eventID , additional parameter and event source.

The overall structure of the architecture is depicted in � REF _Ref404175560 * MERGEFORMAT �Figure 3�.

Since the interest map can get big very soon, a binary search mechanism is implemented, to keep the searching time as short as possible. It is also possible, to specify only one callback function for all incoming events. In that case a switch/case statement has to be implemented in the callback handler. Furthermore a default callback function is provided, which is called for every incoming events with no callback handler specified. The callback handler can be dynamically changed at runtime.

Integration through PDM

LCOB does not address data integration by a common data model. Each aspect system defines its own data model and is also responsible for its own data. This data is stored locally to the aspect system. Data that must be shared between several aspect systems can be read by all aspect systems, but the manipulation of the data is usually done by the owner of the data. When another aspect system wants to make changes, it has to use the owner’s aspect system interface. Tools using data from another aspect system have to synchronize themselves with the data owner to ensure data consistency. The data owner does not notify other aspect systems that have some of its data.

We are therefore planning to integrate the different aspect systems with the help of a PDM system. The approach that we will select will yield on a partial data integration.

Data Integration and STEP

The STEP standard [ISO 95] defines a data model for describing a product during the complete life cycle from early concepts, through design, engineering manufacturing and maintenance. STEP defines a complete environment including a data definition language, formats for the exchange of data, a standard data access interface (SDAI) [ISO 95-21] to data bases and most important a consistent data model for many different application domains, e.g. ship, aerospace, automotive, oil and gas, process industry, etc. The use of STEP is the ultimate example of full data integration through the usage of ONE data model across the entire system. Although this would perfectly ensure data consistency and integrity, there are only few systems available that fully support this standard. Another hurdle on the way to achieving full data integration is the huge amount of work that is needed across the different systems to define and agree on this data model.

The usage of STEP for the exchange of engineering data is becoming a daily practice in some ABB companies, mostly for mechanical design data. The exchange of data is supported through simple management tools. However this approach has still many drawbacks of a „loose coupling“: There is no control about the data, checkin/checkout is not possible, etc. In the investigation that has just started we are therefore evaluating the use of a PDM system for the management of data on the basis of a partial STEP data model.

PDM as Backbone System

Our approach therefore relies on the usage of a partial data model as the backbone. We are currently in the process of identifying the parts of an overall data model that will be used by all of the different aspect systems. These parts are generated, used and changed in several of the aspects systems. In order to improve data consistency and ensure that the users are always dealing with the most up-to-date information, the parts of the overall data model that we have selected will be handled and managed by a PDM system. In our approach the PDM system will not be the central entry point - the aspect systems will use the PDM services as some sort of generic services, which are available through the LCOB. The aspect systems will then exchange the backbone part of the data while adding and storing additional proprietary information locally as explained above. Please note that aspect in our approach is very similar to the concept of design views in STEP.

� EMBED Visio.Drawing.4 ���

Figure � SEQ Figure * ARABIC �4� Integration with PDM System

Figure 4 depicts the overview of the integration of the LCOB system with the PDM system. It should be noted, that the common data is now maintained through the PDM system, but used within all other aspect systems. We are planning to investigate the use of the PDM enablers [PDM 97] which are currently under definition through the OMG.

STEP defines application protocols for specific application domains such as AP212 for electrical systems and AP214 for the design of automotive parts. These APs cover a rather large process chain and are therefore compatible only to a small extent. In order to be able in future to connect to any systems that are fully STEP compatible, we will be using the STEP data models as a starting point for our modeling exercise.

Summary

Within ABB there is a strong need for the integration of different engineering systems. ABB Research is working together with different customers within the ABB holding to develop, implement and achieve the appropriate level of system integration to maintain ABB’s lead in large, complex product development. One type of integration - control - has been implemented in different ways. The second type, data integration, will be implemented in the short future, using a backbone approach where common data is identified between different systems. This data is stored and maintained in a PDM system. In essence the combination of the different approaches will enhance the integration of the different systems and thereby ensure consistency of data among those systems, reduction of time needed to exchange data and therefore improve the overall integration.

We are presently some distance away from establishing a global Integrated Engineering Environment (IEE) capability. There are technical, architectural and organizational issues that have yet to be explored and resolved. Two essential ingredients needed for any successful IEE initiative are: 1) management buy-in and continued support and, 2) a critical mass of experienced people to carry out the work(leaving aside the fact that clearly there must also be a business benefit). Finally, and very importantly, it is absolutely necessary to manage the expectations that our internal customers may have resulting from the promise of advanced technology. Too often the promises of engineering automation by advanced information technology have missed their targets. ABBs’ IEE initiative is aimed at implementing those elements of the IEE vision that address a specific business need through a scaleable implementation strategy that allows enhancements and additional functionality to be included as needed.

References

[CFA 95] — Object Management Group, Framingham, MA. Common Facilities Architecture (Revision 4.0), January 1995. OMG Document 95-1-2.

[CORBA1.2 93] — Object Management Group, Framingham, MA. The Common Object Request Broker: Architecture and Specification (Revision 1.2), December 1993. OMG Document 93-12-43.

[CORBA2.0 95] — Object Management Group, Framingham, MA. CORBA 2.0/Interoperability Universal Networked Objects (Revision 1.8), March 1995. OMG Document 95-3-10.

[ODP 95] — ITU-T X.90 or ISO/IEC 10746-1, Reference Model of Open Distributed Processing Part 1, ISO/IEC JTC1/SC21/WG7, May 1995.

 [ISO 95] — ISO 10303: Part1: Overview and fundamental principles. ISO TC 184 SC4, April 1995, Geneva.

ISO 95-21 — ISO 10303: Part 21: Clear Text Encoding of the Physical File Exchange Structure, ISO TC 184 SC4, 1995, Geneva

[OMAG 92] — Object Management Group, Framingham, MA. Object Management Architecture Guide (Revision 2.0), September 1992. OMG Document 92-11-1.

[OSA 95] — Object Management Group, Framingham, MA. Object Services Architecture (Revision 8.1), January 1995. OMG Document 95.1-47.

[PDM 97] — mfg/97-04-01 (Initial Submission to Product Data Management Enablers RFP (MFG RFP1) by Metaphase Technologies, April 1997.

� The latter case requires Distributed OLE or CORBA and is not contained in this prototype.

C. Zeidler, B. Malle: Integration Techniques Approaches	Page � PAGE �8�

