
details, please see “Inside OLE 2, Second Edition, Kraig Brockschmidt, Microsoft Press, 1995” on page 3.
So far, ActiveX has been primarily targeted towards the GUI arena although, with COM+, Microsoft has
announced it’s intentions to extend it to distributed objects and enterprise components. Then there’s Java-
Beans and EnterpriseJavaBeans which targets both the GUI as well as the enterprise/server sections of
the markets. And finally, there’s CORBA components - an RFP has been issued by OMG for this and is in
the process of standardization. Please refer to “CORBA Components RFP, OMG document #, orbos/96-
06-12” on page 3. for details.

We have submitted a response to the CORBA components RFP to deal with enterprise components in the
CORBA domain (“CORBA Components, Joint Initial Submission to OMG’s RFP (orbos/96-06-12) by Ora-
cle, IBM, Netscape, SUN and Visigenic et. al. OMG document # orbos/97-11-24.” on page 3).

Elements of the Component Model
What should a standard for component models specify? Here, we outline our notion of what a component
model comprises, in terms of high level abstractions. We hope that the workshop will help identify any ele-
ments that we have left out and refine the definition of what each of these elements really mean. Any com-
ponent model - be it for GUIs OR for distributed components - needs to specify the following:

1. Properties: An abstract view of the externally visible state of a component.
2. Constraints - A means of specifying constraints on property values and cross property constraint spec-

ification.
3. Event Model: A means of specifying the propogation of occurrences of activity. A specific activity could

be a change in the value of a property.
4. Introspection - A means of reflecting on the component’s capabilities.
5. Customization - A means of customizng a component’s property values.
6. Composition & containment - A means of making complex components by putting together simple

ones.
7. Type Aggregation and Interface Navigation - is the process of putting together interfaces and having a

means of navigating between the various ones.
8. Versioning - The notion of evolution of interfaces and ways and means of tagging and using these

tags.
9. Packaging & Installation - Putting a component together for software distribution and then using a

component package in building an application

In addition, a “server side” component model will also need to specify:
1. Transaction Model - followed by components and responsiblitites of the containers in providing for

these services.
2. Persistence Model - A model of persisting the state of a component.
3. Concurrency Control - Shared access of components.
4. Security - It is arguable whether security is a server side consideration alone OR needs to be specified

outside of this realm.
5. Messaging & Qualitites of service specifications for the infrastructure.

References:

1. JavaBeans Specification, Version 1.01, Graham Hamilton, SUN Microsystems, July 1997
2. CORBA Components RFP, OMG document #, orbos/96-06-12
3. CORBA Components, Joint Initial Submission to OMG’s RFP (orbos/96-06-12) by Oracle, IBM,

Netscape, SUN and Visigenic et. al. OMG document # orbos/97-11-24.
4. Inside OLE 2, Second Edition, Kraig Brockschmidt, Microsoft Press, 1995

cific libraries provided prepackaged logic which he could use.

Class libraries provided some set of related classes which one could use as is OR could specialize via
inheritance to solve a problem. But they did not deal with designs which would provide solutions to specific
problems. Frameworks were proposed as a solution to this - they provided a solution to a problem via an
abstract design which one then had to specialize and tune.

The difficulty in using frameworks were that they were abstract reusable “designs” which had to be dealt
with by expert programmers to specialize and make concrete. The solution was to combine the advan-
tages of reusable designs with those of reusable implementations. These are components and are the
state of the art in software development. A component can be defined to a reusable software artifact which
is the unit of software distribution and manageability at design and runtimes. Components are analogous
to software ICs and represent a style of programming that is at a much higher level of abstraction that any-
thing that is seen today.

Why Use Components for Software Development?
Components raise the level of abstraction to that which can be easily used by a domain expert who is not
necessarily an expert programmer. They allow software vendors to build visual development environments
in which the concept of plugging together these “software ICs” forms the basis of any new development.
The writing of actual code is kept to a minimum - scripting can be used to glue together components or to
tailor existing behavior. A typical development effort using components would be importing the compo-
nents of interest and customizing each one them WITHOUT explicit coding and finally wiring together the
components to form an application. The advantages are immediately obvious:

• Increased productivity gained by reuse of design and implementation
• Increased reliability by using well tested code
• Lower maintainence costs because of a smaller code base.
• Minimizes effects of change since black box programming tends to rely on interfaces as compared to

explicit programming.
• Components provide a well encapsulated mechanism to package, distribute and reuse software.

Barriers to Reuse
Although there are several known reasons for lack of reuse, the primary one which we wish to focus on is
the lack of standards in software development. We will further limit our discussions to component based
development since it is our premise that all software will be developed using components for the reasons
mentioned above. There are several vendors who sell environments to support component based develop-
ment. Since there is no interoperability between vendor’s products (for lack of a standard), no developer
can expect to write components that will run seamlessly in different vendor’s environments. This is the pri-
mary barrier to reuse of components and open, component based software development. JavaBeans has
become a defacto standard for Java components as is ActiveX/COM/COM+ .There is however, no such
standard for components written in other languages OR for other platforms. What is required is a single
standard for components that will be able to seamlessly interoperate with the existing ones of JavaBeans
and COM+. A user living in an environment which supports all of these standards should be able to pick up
a component, be it a JavaBean, a COM component etc, and use it in the paradigm that he is programming
in without any interference from him. To clarify this, if the user is developing using the JavaBean paradigm,
the component he picks up should be available as a JavaBean in that environment as far as the API are
concerned. This kind of standards based interoperability is the key to large scale reuse.

Standards for Software Components
What are the actual standards for component (based) development available in this area? There’s the
COM+ standard which is defined by Microsoft and is available on only one platform - Windows. For

The Role of Components & Standards in Software Reuse
Dr. Umesh Bellur

 Oracle Corporation
ubellur@us.oracle.com

Introduction
This paper presents the role of standards as we see it in the use of and acceptance of components for the
rapid development and deployment of enterprise software applications. Our thesis is that the existence of
standards (defacto or otherwise) and adherence to them to promote open systems is the primary motiva-
tion to build reusable software and well as reuse it. Standards ensure consistency, compatibility and allow
multiple vendor’s products to interoperate thereby fostering resuse.

The views we have proposed here stems from our experience in putting together a proposal for an OMG
standard CORBA component model (jointly with with SUN, Netscape, IBM, Visigenic & others) as well as
from internal development efforts to support an open architecture for development of distributed applica-
tions using components.

Evolution of Abstraction & Reuse
Aeons ago, people used assembly langauges to program computers. As we grew out of the assembly
ages, along came high level languages which made the expression of ideas simpler and more compact. As
programmers discovered that they spent time reprogramming existing data-structures, class libraries were
born. This raised both the level of abstraction as well as the level of reuse in application development.
Then came object orientation. The notions of encapsulation, information hiding and polymorphism proved
irresistible. Modular development was reborn with object orientation’s renewed popularity in the early to
mid 80s.
But merely programming with objects did not ensure reuse. It was only after the notion of objects was

extended to libraries of classes, that reuse began to take serious shape. Several commercial class libraries
began to appear and the popularity of these libraries focused people’s attention on the promise afforded by
the reuse of software. At the same time, the level of abstraction which was afforded to the applications
developer was being raised from having to program all his objects to one where generic and domain spe-

Potential for Reuse

Level of
Abstraction

class libraries

Frameworks

Components

No Reuse

Implementation Reuse

Design Reuse

Implementation
& design reuse

Code

Specialization via Inheritance

Visual Programming &
Customization

Imcreasing Productivity

Objects

