The Need for Component-based Software:

Application of OMG CORBA in Building an Engineering Environment for Component Construction and Composition

Mansour Kavianpour

Vice President of Product Development

Affinity Media Inc. (AMI)

11900 W Olympic Blvd Suite# 620

W Los Angeles CA 90064-1152

E-mail: mansour@afmedia.com

Tel# 310-820-6101 Fax# 310-820-8389

Work began on the definition of a “component_based” software meta model and the prototype implementation of the engineering/composition environment supporting such a model in 1990. The project has a long research history. I started the project with two distinguished scientists at the IBM T.J.Watson research center, Mr. William Harrison, and Dr. Harold Osher. The research addresses the requirements of software object composition and proposes a new programming paradigm, “Subject Oriented Programming”. Subject Oriented Programming includes a set of high level concepts which extends the limited features of the Object-Oriented programming. We have produced numerous white papers and presented our research to a number of related OO and CASE conferences. The most visible result of this project was the IBM Object-Oriented Tool Integration Services (OOTIS). We also, submitted a number of RFPs to OMG, based on the OOTIS work. In summary, the OOTIS composition model included:

facilities to build software objects from fragments of code (called fine-grained object composition),

facilities to build components from group of objects,

facilities to build new components from existing components (called coarse-grained object composition)

facilities to replace one or more code fragments of an object (statically or dynamically),

facilities to replace objects within a components(statically or dynamically),

facilities to replace one or more components of an existing component (statically or dynamically), and

facilities to be able to configure execution of components.

These facilities were abstracted and modeled in an Entity-Relationship-Attribute (ERA) form for the proposed component meta model semantics. These facilities were also specified in an OMG IDL-like language, called the Tool Definition Language (TDL). We implemented the composition language on an ORB-like fine-grained method dispatcher, the ISO PCTE (Portable Common Tool Environment), and Versant object database. Publications are available on OOTIS and can be found on the OMG server.

In 1993 I left IBM. I continued the work and extended the OOTIS composition concepts, by layering it on top of the two competing industry standards, the two standard middle wares for distributed object systems, e.g., OMG CORBA and MS DCOM. To support both platforms, a generic composition meta model was introduced. Related publications are available. Note that, these publications were developed when CORBA had no specification defined for changing operation implementation at runtime, (e.g., Dynamic Skeleton Interface (DSI) as well as Portable Object Adapter spec.) Publications produced prior to these additions must be updated.

In the past two years, I continued to work on a first class Visual Component Engineering Environment for CORBA. This work resulted in a CORBA component meta model, where the primary goals of the meta model are:

Building by composition, and

Component interoperability.

The meta model guarantees interoperability if the components being built follow the semantics specified in the component meta model. The meta model extends CORBA in the area where either the CORBA specification is ambiguous or the area which are left unspecified in the CORBA specification.

For example, CORBA does not specify the semantics of a CORBA server, i.e., “what” makes a CORBA server. A CORBA server may arbitrary include one or more objects (instances of CORBA interfaces), these objects may cause other objects to be created as well. A fundamental requirement for a true “component_based” software system is the ability to package or un-package a component with one or more objects. A component is a construct larger than CORBA object (interface), components are open ended. Components can be extended, or merged.

“Component_based” software calls for construction of software objects similar to the hard ware components. A TRUE component_based software allows software objects to be added or removed, in an executing object system, like adding or removing a new CPU or any hardware components to a computer motherboard.

Although, the term “component_based” is being used, by most software vendors, but NONE of the existing CB systems provide any facilities that are required for a true CB environment.

A true component_based system requires extensions to the current state-of-the-art in Object Orientation. OO with its deterministic and limited features (e.g., inheritance) can not provide adequate flexibility require for building today’s ever increasing complex software systems. If we can find the patriarch of the software engineers and ask him (her?) to specify the base class “Universe” from where everything else can be derived to make their own happy “World”, then we may find the solution to the software problems!! Unfortunately, such patriarch does not exist. No one can predict, once for all, the shape of a software system which can constantly be modified through its life, to meet the needs of the constantly changing requirements using OO inheritance. The IBM Telegen project history taught us a dear lesson, 50+ iterations and redesign of the framework class hierarchies, and 7 years of investment could not produce a collection of ready to be inherited framework for building large scale applications. Inheritance does not scale, there is a need for building software systems by composition.

The component_based software MUST be Programming Language model independent. In OOTIS, each code fragment, used to compose an object, can be implemented in different languages, as long as a system linker support exist for the language used in the code fragment. The CB problems CANNOT be solved by application of any existing programming language, including Java. Programming languages are just good enough to implement code fragments, objects, or components. The distribution architecture complexity, the Operating Systems specifics, and hardware dependencies must all be hidden by the middle ware like CORBA or DCOM, not the programming language. The component meta model should make the implementation possible on either the OMG CORBA, or the MS DCOM.

To protect the multi billion dollar investments of the past, a true component_based must provide mechanism for componentization of existing software systems. For example, using OMG CORBA as a middle ware for implementation of the component meta model, one can take advantage of IDL to encapsulate the existing legacy systems.

FYI, our company, the Affinity Media Inc. (AMI) located in Los Angeles, is working on the implementation of a first class visual CORBA component composition environment. The component meta model respects the OMG CORBA and OMA semantic models. The composition environment includes, among other environment services, a composition engine that can be integrated with different vendor CORBA implementations. We have specified the component meta model. It is based on the results of years of research as outlined above. We have been working on it since 1995. It will be implemented on top of IONA Orbix. The component meta model adds a set of complementary high level constructs to CORBA. The environment provides visual tools for component developers with composition paradigm. AMI has registered the product name as CORBAFusion. AMI plan is to announce the composition product in the late 1998. Our current work is proprietary and can not be discussed in details. But, we will be more than happy to share our experience with those interested in this area.

We would also like to see that your initiative will results into a new working group in OMG, where the rest of the industry and major ORB vendors can participate in developing the appropriate RFIs, and RFPs addressing such important requirements which hopefully results in a standard component meta model supporting construction of true component_based software systems.

The AMI component meta model applies to DCOM semantics as well. In fact, our analysis shows that implementing the composition engine on DCOM is less complex than implementing the same model on CORBA. CORBA visibility and market acceptance are the main reason to be chosen as the first middle ware in the implementation of our component composition environment.

I am interested to get more information from other participants and looking forward to hear from other organizations working on component technology.

