
tem and
ctures do
ons in a
re effected

nted by
volving
6], and
likely to
ce.

m pre-

 develop-

the stake-

are in the

g system

 employed
omain.

tion from
on, we
ed above.

ckaging
ures are
n of

Software Architecture and Component Technologies: Bridging the Gap

Information and Computer Science
University of California, Irvine
Irvine, CA 92697-3425 USA

{peymano,neno,taylor,dsr}@ics.uci.edu
http://www.ics.uci.edu/pub/arch/

Peyman Oreizy Nenad Medvidovic Richard N. Taylor David S. Rosenblum
1 INTRODUCTION
Engineering large-scale software systems is fundamentally different from programming in the small. A programming
language statement is inadequate as the unit of development. Instead, components must become the building blocks of
software. Component-based development of software has become an area of intense research and commercial focus, resulting
in several component interoperability models, such as CORBA, ActiveX, and JavaBeans. These models have the potential to
help practitioners cope with the increasing complexity of software systems.

Software architecture is another promising approach to controlling software complexity. Software architecture research is
directed at reducing costs of developing applications and increasing the potential for commonality between different members
of a closely related product family. Architectures enable developers to center on the “big picture” in developing a sys
to adopt a component-based development philosophy as opposed to always building a system from scratch. Archite
this by making a software system’s structure explicit, separating the computation of components from their interacti
system, and providing a high-level model of a system that can be manipulated and analyzed before any changes a
in an actual implementation.

In this paper, we argue that the full benefit of component interoperability models can only be achieved if compleme
explicit architectural models. We first outline a set of driving factors in selecting an approach to engineering and e
large, complex, distributed applications. We then evaluate a particular software architectural style, C2 [TMA+9
differentiate it from component models based on these goals. Finally, we briefly discuss the issues which are
determine the role and prominence of an architectural approach in the formation of a software component marketpla

2 REQUIREMENTS FOR COMPOSITIONAL SOFTWARE ARCHITECTURES
Any approach to effectively designing, implementing, and evolving large, complex, distributed systems, potentially fro
existing, heterogeneous parts, must support at least the following goals:

• Allow communication about a system among multiple stakeholders: customers, architects, managers, component
ers, system integrators, users, and so on.

• Allow understanding of and reasoning about a system at a level of abstraction above source code and closer to
holders’ mental models of the system.

• Narrow the gap between system requirements, which are in the “problem” space, and software designs, which
“solution” space.

• Support reuse and families of applications as opposed to custom and “one of a kind” solutions.
• Enable codification of successful design and evolution properties from legacy projects.
• Allow upstream analysis to correct errors early and reduce costs associated with those errors.
• Allow reconfigurability of software both before and during runtime.
• Allow components of varying granularities, implemented in different programming languages.
• Support distributed, heterogeneous environments with multiple address spaces, threads of control, and operatin

processes.

The architecture community has developed the consensus that, to achieve these properties, a technology must be
which provides explicit, high level system models and support for capturing recurring properties of an application d
Our experience indicates that software architectures, and particularly architectural styles that separate computa
communication through explicit communication elements, in fact provide such a technology. In the following secti
describe the C2 architectural style [TMA+96], which has been designed to support a large subset of the goals outlin

3 EXPERIENCE WITH THE C2 ARCHITECTURAL STYLE
The C2 style is primarily concerned with high level system composition issues, rather than particular component pa
approaches; the style can employ multiple component middleware technologies. Building blocks of C2 architect
components (computational elements) and connectors (interconnection and communication elements). This separatio
Page 1 of 3

tential for
hanging

acilitates
 cannot
nts sharing

control,
ally, a
ariations

een used
 of C2’s

brary
ponents

o demon-

on-

itself
unication

ion

, inter-
nd styles,
yzing

teraction
ains: use

ultiple
nal inter-
(IDLs) of
frastruc-

wing the
 architec-

odeling

 a
ral ele-
teraction
us mes-
computation from communication enables the construction of flexible, extensible, and scalable systems that can evolve both
before and during runtime. The style places no restrictions on the implementation language or granularity of components and
connectors, potentially allowing it to use multiple interoperability technologies. Central to the C2 style is a principle of
limited visibility or substrate independence: components are arranged in a layered fashion in a C2 architecture, and a
component is completely unaware of components that reside “beneath” it. Substrate independence has a clear po
fostering substitutability and reusability of components across architectures. Components communicate only by exc
messages through connectors, which greatly simplifies the problem of control integration issues; this property also f
low-cost interchangeability of components to construct different members of the same family. Two components
assume that they will execute in the same address space; this eliminates complex dependencies, such as compone
global variables, and simplifies modification of architectures. Conceptually, components run in their own thread(s) of
allowing components with potentially different threading models to be integrated into a single application. Fin
conceptual C2 architecture can be instantiated in a number of different ways. Many potential performance issues or v
in functionality can be addressed by separating the architecture from actual implementation techniques.

Most of these properties have been demonstrated in various applications built using the C2 style. C2 has b
successfully in several application domains. We are currently exploring its applicability to other domains. Examples
use are:

• Family of video games — An architecture for a family of interactive video games was designed in the C2 style. A li
of interchangeable components in multiple programming languages was produced and several off-the-shelf com
were reused to enable over 500 variations of the video game. Several dozen such variations were built. We als
strated the ability to substitute components and change from one variation of the game to another “on the fly”.

• Mission-critical logistics application — The suitability of the style for building mission-critical applications was dem
strated by designing and implementing a cargo-routing application, and adding extensions to it at runtime.

• Simple software development environment — The tool suite used in designing and implementing C2 applications has
been implemented in the C2 style; each tool in the environment is treated as a C2 component and all comm
among them occurs via C2 connectors.

• Avionics system simulation environment — Northrop Grumman is currently designing a USAF B-2 aircraft simulat
environment in the C2 style.

4 UTILIZING EXISTING COMPONENT MIDDLEWARE TECHNOLOGIES IN CONCERT WITH SOFTWARE
ARCHITECTURE TECHNOLOGIES

Existing component middleware technologies, such as CORBA, ActiveX, and Java Beans, are component-centric: they are
primarily concerned with standardizing external component properties—interfaces, packaging, binding mechanism
component communication protocols, and expectations regarding the runtime environment. Software architectures a
in contrast, are system-centric: they focus on specifying systems of communicating black-box components, anal
resulting system properties, and generating “glue” code that binds system components.

Both are crucial aspects of component-based software development, yet there has been surprisingly limited in
between the two domains. The different foci suggest a possible strategy for bridging the gap between the two dom
existing component middleware technologies to implement systems modeled with architectural technology.

Several key technological challenges must be overcome before a seamless transition is possible:

• a shared model combining existing architectural models and component middleware technologies — The two domains
use similar, but incompatible, models of components and component bindings. ActiveX, for example, supports m
functional interfaces for each component, whereas most architectural modeling notations support a single functio
face per component. Many of these inconsistencies are revealed by comparing the interface definition languages
each domain. Other inconsistencies require careful comparison of the capabilities provided by the component in
ture and architectural description language (ADL). ActiveX’s dispatch interfaces and CORBA’s dynamic method invoca-
tion, for example, enable components to dynamically locate, load, and invoke services of other components, allo
system to evolve as new components are introduced. Some ADLs, in contrast, typically assume that a system’s
ture is static and does not evolve after system generation. The C2 ADL, among others, does provide dynamic m
capabilities.

• a mapping from architectural entities to the implementation components — Components at the architectural-level have
potentially straightforward mapping to components at the implementation level. It is unclear how other architectu
ments are mapped onto the implementation. An architectural connector providing a synchronous request-reply in
maps naturally to CORBA’s static method invocation mechanism. More complex connectors, such as asynchrono
sage broadcast connectors, would most likely have to be implemented as separate CORBA components.
Page 2 of 3

mpo-
lly make
 transac-

hould also

 software

ccess of a
 markets

ll and
nstructed
ners.
t and
t.
nd cus-
 compo-
ould be

 for
uld sup-

signers

 some
pport the

l infra-

r (iso-
d not be

ponents.
 backing,
trategy, a
bstantially

ring large,
used on

unity for
those of
oftware

nd D.

n of a
hop on
• modeling infrastructure services — The component interactions in a complex system constructed using existing co
nent middleware technologies provide only a partial model of the system. This is because components typica
extensive use of the services provided by the middleware infrastructure (e.g., CORBA’s persistence, events, and
tion services) and by the operating system, which are both critical to understanding the system. These services s
be represented at the architectural level.

These technological challenges are significant and complex, yet their solution does not guarantee a successful
component marketplace. We examine some of the other issues in the subsequent section.

5 A SOFTWARE COMPONENT MARKETPLACE
There are a myriad of factors beyond the architectural issues we have raised thus far that affect the commercial su
component marketplace. Our previous work examines successful component marketplaces, including commercial
such as Visual Basic VBXs, and non-commercial markets such as UNIX filters [WRMT95]. Several of the key architectural
requirements exhibited from these successful markets include support for:

• Multiple component granularities - The architectural infrastructure must support components that are both sma
large, from simple data structures to large databases. While most larger components would undoubtedly be co
from smaller components, larger components can provide a more meaningful packaging of functionality for desig

• Substitutability of components - The architectural infrastructure must provide support for removing one componen
substituting it for an equivalent component. This allows competition based on features and price for a componen

• Parameterized components - The architectural infrastructure must support components that can be parameterized a
tomized during design. Ideally, the parameterization process should be easy to perform, facilitating the use of the
nent during design. A provision enabling the parameterization functionality to be removed for system release sh
available to reduce the size of the application.

• Component development in multiple programming languages - Since different programming languages have strengths
different application domains, and since new languages emerge periodically, the architectural infrastructure sho
port components developed in different programming languages.

• Component-specific help - In order to reduce the barrier to use components, it should be possible for software de
and component users to receive help regarding the use of a particular component.

• User interface composition - While there are many components that do not present a user-interface, there are
domains and components that do have stereotypical user interfaces. The architectural infrastructure should su
composition of multiple component user interfaces into a single, uniform, integrated, user interface.

• Easy distribution of components - It should be easy to package and distribute a component. Ideally, the architectura
structure should support component packaging and distribution in various forms.

• Support for multiple sales models - Existing software has multiple sales models, ranging from single sale, single-use
lated PC model), to single sale, multiple user (network-based PC model). The architectural infrastructure shoul
biased to a particular sales model, and should ideally support different licensing and pricing models.

Additionally, the marketplace must satisfy certain requirements, such as supporting the task of locating relevant com
It should not be forgotten that many of the critical factors resulting in success are non-technical, such as monetary
support by key software vendors, companies willing to develop and purchase components, market timing, market s
cost effective distribution channel, and pricing. However, addressing the technological issues presented here can su
enhance the chances a given component architecture has in becoming a successful commercial marketplace.

6 CONCLUSION
Component middleware technologies alone do not adequately address certain system-wide aspects of enginee
complex, distributed software systems. Software architecture research, on the other hand, typically has not foc
component development, packaging, and interoperability. These different but complementary foci indicate an opport
an effective marriage of the two areas, where one can couple the benefits of explicit architectural models with
component interoperability models. Such a unified approach would form a solid basis on which a successful s
component marketplace can built.

7 REFERENCES
[TMA+96] R. N. Taylor, N. Medvidovic, K. M. Anderson, E. J. Whitehead, Jr., J. E. Robbins, K. A. Nies, P. Oreizy, a

L. Dubrow. A Component- and Message-Based Architectural Style for GUI Software. IEEE Transactions on
Software Engineering, vol. 22, no. 6, pages 390-406 (June 1996).

[WRMT95] E. J. Whitehead, Jr., J. E. Robbins, N. Medvidovic, and R. N. Taylor. Software Architecture: Foundatio
Software Component Marketplace. In David Garlan, ed., Proceedings of the First International Works
Architectures for Software Systems, pages 276-282, Seattle, WA, April 24-25, 1995.
Page 3 of 3

	1 INTRODUCTION
	2 REQUIREMENTS FOR COMPOSITIONAL SOFTWARE ARCHITEC...
	3 EXPERIENCE WITH THE C2 ARCHITECTURAL STYLE
	4 UTILIZING EXISTING COMPONENT MIDDLEWARE TECHNOLO...
	5 A SOFTWARE COMPONENT MARKETPLACE
	6 CONCLUSION
	7 REFERENCES
	Software Architecture and Component Technologies: ...
	Peyman Oreizy
	Nenad Medvidovic
	Richard N. Taylor
	David S. Rosenblum
	Information and Computer Science
	University of California, Irvine
	Irvine, CA 92697-3425 USA
	{peymano,neno,taylor,dsr}@ics.uci.edu
	http://www.ics.uci.edu/pub/arch/

