Object Transfer, Access, and Management (OTAM): ConceptS and Implications For the CORBA Environment

Introduction

If it is not already an object, a client may not even know of its existence.

The above statement is true for object-oriented environments and is especially true in the Common Object Request Broker Architecture (CORBA) environment as defined in CORBA version 2.0 and is likely to be true in the next version of CORBA. CORBAfacilities and CORBAservices provide part of the answer, but there is still no functionality equivalent to, or surpassing, the Internet Engineering Task Force’s (IETF’s) File Transfer Protocol (FTP) or the International Organization for Standardization’s (ISO’s) File Transfer, Access, and Management (FTAM) protocols and services. In short, there is nothing in the CORBA environment, short of a custom application, that allows simple directory and file access across the internet.

Background

The Internet is successful in large part because it allows a user (client) to perform Network Investigation, Discovery, and Retrieval (NIDR) functions. Fundamental to success of NIDR in the today’s information systems environment is the successful transfer of information between client and server. The World Wide Web (WWW) using the HyperText Manipulation Language (HTML) and HyperText Transfer Protocol (HTTP) tends to get a great deal of notice, but it’s the File Transfer Protocol (FTP) that provides the functionality that allows graphics files and documents other than HTML pages to be downloaded to the client. FTP allows browsers and other applications, including user terminal environments, to remotely navigate a file server’s directory and, in some cases, store data on the server, rather than just reading the data. Thus, it provides a common model for the access, transfer, and management of files and, in some cases and with the appropriate front-end processing, databases among diverse applications. However, FTP does not address objects, per se, except when they are treated as files.

The ISO Open Systems Interconnect (OSI) protocol stack has within it a somewhat more robust capability known as the File Transfer, Access, and Management (FTAM) protocol and related services. FTAM (like FTP) provides the capability to traverse complete file structures on a server, but is inherently distributed in nature and also allows access and management of data within some file types. Also like FTP, FTAM offers a common model relative to traditional data files, but does not address objects directly.

The CORBA-based distributed object environment, on the other hand, lacks the ability to manage file and data access in the Internet environment and, therefore, is unable to perform NIDR-like functions in the CORBA environment. Rather, CORBA Services and Facilities are oriented toward management of objects, and, sometimes, relational database tuples. Thus, most data currently available is beyond the reach of a CORBA-based client since there is no capability within the CORBA distributed object environment to navigate the directory structures of remote servers and to store and retrieve files, or records in record based files such as Indexed Sequential Access Method (ISAM) files, or in files in a database system without specialized front-end processing.

Purpose

The purpose of this paper is to explore an Object Transfer, Access, and Management (OTAM) architecture that is based, in part, on the FTAM architecture. This exploration will involve assessing the functionality and implementability of an OTAM. Additionally, it will examine various issues associated with the use or replacement of CORBA services.

1.1	Scope

This document is, in the definition of the Object Management Group (OMG), a “Green Paper.” As such it explores technical issues and will result in technical recommendations.

1.2	Organization of This Document

This document is organized into four basic sections: OTAM Architecture, Issues, Recommendations, and Closeing Remarks. Each of these sections is outlined below.

Section 2, OTAM Architecture, discusses the OTAM concept in some detail, including a description of FTAM, how an FTAM-like virtual filestore could be implemented in the CORBA environment, and how a virtual filestore could be enhanced using existing and anticipated CORBA Services and Facilities.

Section 3, Issues, examines the implications and the opportunities that are presented by an OTAM capability.

Section 4, Recommendations, consists of a series of options that should be considered by OMG relative to the issues identified in Section 3.

Section 5, Closing Remarks, presents some conclusions and further issues that should be considered for examination.

OTAM Architecture

This section describes the conceptual architecture of an OTAM capability. First, it provides a description of FTAM, the virtual filestore that it specifies, and the architecture of FTAM. Next, this section describes the Trader Service and how it relates to OTAM. The section will conclude with a description of an OTAM capability that could be implemented in the CORBA Environment.

1.3	The File Transfer, Access, and Management (FTAM) Protocol

FTAM (Table 1) was designed to provide for efficient management of data, databases, and files using a basic client/server model (Figure 1). Central to this is the concept of a virtual filestore (Figure 2), which is intended to provide a common model for the transfer of files and databases among diverse applications and systems. It is an abstract model whose objective is to simplify the interaction with both local and remote files in a networked environment.

FTAM provides capabilities for, but are not limited to:

Filestore to filestore transfer

Diskless workstation (aka Network Computer) file access

Special applications such as printing and spooling

Remote database access

FTAM Specifications

Specification Number�
Title�
�
ISO 8571-1:1988�
Information processing systems -- Open Systems Interconnection -- File Transfer, Access, and Management -- Part 1: General introduction�
�
ISO 8571-2:1988�
Information processing systems -- Open Systems Interconnection -- File Transfer, Access, and Management -- Part 2: Virtual Filestore Definition�
�
ISO 8571-3:1988�
Information processing systems -- Open Systems Interconnection -- File Transfer, Access, and Management -- Part 3: File Service Definition�
�
ISO 8571-4:1988�
Information processing systems -- Open Systems Interconnection -- File Transfer, Access, and Management -- Part 4: File Protocol Specification�
�
ISO/IEC 8571-5:1990�
Information processing systems -- Open Systems Interconnection -- File Transfer, Access, and Management -- Part 5: Protocol Implementation Conformance Statement Proforma�
�
ISO/IEC 10170-1:1993�
Information technology -- Open systems Interconnection -- Conformance test suite for the FTAM Protocol -- Part 1: Test suite structure and test purposes �
�
ISO/IEC ISP 10607-1:1995�
Information technology -- International Standardized Profiles AFTnn -- File Transfer, Access, and Management -- Part 1: Specification of ACSE, Presentation and Session protocols for the use by FTAM�
�
ISO/IEC ISP 10607-2:1995�
Information technology -- International Standardized Profiles AFTnn – File Transfer, Access and Management -- Part 2: Definition of document types, constraint sets and syntaxes�
�
ISO/IEC ISP 10607-3:1995�
Information technology -- International Standardized Profiles AFTnn – File Transfer, Access, and Management -- Part 3: AFT11 -- Simple File Transfer Service (unstructured)�
�
ISO/IEC ISP 10607-4:1995�
Information technology -- International Standardized Profiles AFTnn -- File Transfer, Access and Management -- Part 4: AFT12 -- Positional File Transfer Service (flat)�
�
ISO/IEC ISP 10607-5:1995�
Information technology -- International Standardized Profiles AFTnn – File Transfer, Access and Management -- Part 5: AFT22 -- Positional File Access Service (flat)�
�
ISO/IEC ISP 10607-6:1995�
Information technology -- International Standardized Profiles AFTnn – File Transfer, Access and Management -- Part 6: AFT3 -- File Management Service�
�
ISO/IEC DIS 15298�
Information technology -- OSI Applications Program Interfaces -- File Transfer, Access, and Management (C language)�
�

�EMBED Unknown���

FTAM Model

�EMBED Unknown���

FTAM Virtual Filestore Concept

FTAM Model

The basic model of FTAM (Figure 3) is based on an initiator (client)/responder (server) relationship. In FTAM, the initator has knowledge of its local real filestore and the existance of a responder with knowledge of its own virtual and real filestores. The initiator requests knowledge of the virtual filestore, which is provided by the responder. All interactions between the initiator and responder are then accomplished using the virtual filestore definition, while each is knowledgeable of and accesses its real filestore for the actual data to be transferred.

�EMBED Unknown���

FTAM Configuration

1.3.1	FTAM Virtual Filestore

FTAM, then, is based on the concept of a virtual filestore. FTAM provides the capability of mapping a local (or real) filestore to a virtual filestore to enable remote access without specific knowledge of the real filestore. Filestore and file definitions are accomplished through the use of schemas and subschemas (or sets and subsets in the parlance of the virtual filestore), respectufully. In short, it describes a uniform file structure and a uniform set of operations. Rarely do its structure or operations reflect the true capabilities of the real filestore. Rather, its structure and operations reflect a minimum required capability to provide file transfer, access, and mamagemet functions.

The virtual filestore is an abstract model that describes a directory or file structure, its characteristics, and its attributes. These are expressed as a set that has many subsets in a hierarchical relationship. Thus, in Figure 1, Virtual Filestore A is an abstract description of Real Filestore A that describes either a single file, or the root directory as seen in the virtual filestore. Subsets will describe any files or subordinate directories in the real filestore.

The virtual filestore defines a hierarchical file structure for which a uniform set of services is defined (more about the services later). This hierarchical file structure is only a view of the real filestores that it represents, which can be in many forms.

The virtual filestore is recursive and represented as one or more File Access Data Units (FADUs – Figure 4), the unit of access in the virtual filestore. Each FADU represents a node of the virtual filestore and is composed of three distinct parts: a node descriptor (name), an optional Data Unit (DU), and optional child nodes. Data units may range in contents from directory and subdirectory header information to complete data files.

�EMBED Unknown���

Simplified view of an FADU

Beginning with an FADUs to represent the root directory of a virtual filestore and nested FADUs to represent the subdirectories or databases, FADUs can be used to represent a wide variety of file structures (Figure 5). Files and databases themselves are found at the leaves of the resultant inverted tree.

FTAM defines the concept of a constraint set which is similar to a data type as a way of describing FADUs. FTAM constraint sets include: unstructured files, sequential flat files, ordered flat files, ordered flat files with unique names, ordered hierarhical files, general hierarchical files, and general hierarchical files with unique names. Each constraint set is described through a number of features, including: a constraint set descriptor that identifies the constraint set type, a unique identifier naming the constraint set, node names, file access actions authorized, access context, and other metadata applicable to the FADU. Access contexts include: the entire FADU, the entire FADU without DUs, the entire FADU viewed as a flat file, a horizontal slice through an FADU at a given level, root node data and its descriptor, the entire FADU viewed as an unstructured file, and root node data.

�EMBED Unknown���

Example Hierarchical File Access Structure

In order to provide restricted views of a virtual filestore to some users, the concept of an access point is included. This allows a subdirectory in one view to appear as a root directory in another. It is important to remember here that the real filestore only consists of those directories and files that its owner decides to make visible to the virtual filestore. Directories and files not desired to be exposed via the virtual filestore need only to be omitted from the set or subset definition in order to remain “hidden”. Additionally, for those directories and files exposed via the virtual filestore, their real structures need not be exposed. Rather, the Virtual Filestore provides “views” of the directories and files that may or may not reflect the actual structure of the information. This mapping using a limited set of primitives allows for the joining of different subsets of the virtual filestore regardless of the complexity and format of their real filestore representation.

FTAM Virtual Filestore File Attributes

The FTAM standard defines attributes in two categories: file attributes (Table 2) and activity attributes (Table 3). File attributes describe the features of a file. Activity attributes describe the status of a file in use. In both categories, these attributes are grouped into four major groups: a kernel group of attributes that are mandatory of all files and must always be available, an options storage group that describes the features of a filestore, an optional security group that describes the access controls applicable to the file, and an optional private group of attributes, which experts recommend not be used.

File Attributes

Attribute�
Group�
�
File name�
Kernel�
�
Permitted actions�
Kernel�
�
Contents type�
Kernel�
�
Storage account�
Storage�
�
Date and time of creation�
Storage�
�
Date and time of last modification�
Storage�
�
Date and time of last read access�
Storage�
�
Date and time of last attribute modification�
Storage�
�
Identity of creator�
Storage�
�
Identity of last modifier�
Storage�
�
Identity of last reader�
Storage�
�
Identity of last attribute modifier�
Storage�
�
File availability�
Storage�
�
File size�
Storage�
�
Future file size�
Storage�
�
Access control�
Security�
�
Legal qualifications�
Security�
�
Private attributes�
Private�
�

1.3.2	FTAM Document Types

When taken in combination, the above FTAM elements allow for the definition of a wide variety of file types. While the FTAM specifications do not preclude any combination of these elements, it does identify five commonly used combinations that define what the specification refers to as document types. These document types are: unstructured text, sequential text, unstructured binary, sequential binary, and simple hierarchical file. Each is defined in terms of a name, related abstract syntax names, a transfer syntax name, parameters, the file model identifier, a constraint set identifier, and a definition file contents in terms of data types.

Activity Attributes

Attribute�
Group�
�
Active contents type�
Kernel�
�
Current access request�
Kernel�
�
Current initiator identity�
Kernel�
�
Current location�
Kernel�
�
Current Processing mode�
Kernel�
�
Current calling AE-Title�
Kernel�
�
Current responding AE-Title�
Kernel�
�
Current account�
Storage�
�
Current concurrency control�
Storage�
�
Current locking style�
Storage�
�
Current access password�
Security�
�
Current legal qualifications�
Security�
�

1.3.3	FTAM Operations

FTAM primitive operations are equivalent to methods or operations in an object-oriented environment. Further, these operations are arranged into regimes (Figure 6) that group operations with levels of the FTAM hierarchy. Thus, there are four regimes:

Application connection – initializes connection with a particular virtual filestore

File selection – operations for navigating a directory and selecting a file or subdirectory in the virtual filestore for further processing

File access – file level operations in the viritual filestore

Data transfer – operations for the exchange of data between client and server

Figure 7 is a series of interaction diagrams that illustrate the use of some of the primitives within each of the regimes.

�EMBED Unknown���

FTAM Operational Regimes

�EMBED Unknown���

�EMBED Unknown���

Example of FTAM interactions

1.4	ISO/OMG Trader Service

In order to be of use, the desired virtual filestore must be known beforehand. Thus, it appears to be well suited for network information retrieval, the NI_R parts of NIDR, but it does not help the client to find not previously known information (i.e., there is no discovery operation).

The ISO/OMG Trader Services appears to provide the answer to this problem. Using the Trader as a mechanism for publicizing the availability of a filestore for use over the internet should allow a client to search for sources of specific information, and then access the appropriate filestore.

1.5	The OTAM Concept

The OTAM concept is very simple. It is based on the use of a Trader Service and an object-oriented implementation of the concepts found in FTAM. FTAM FADUs can be implemented as objects, FTAM regimes as services, and FTAM primitives as object methods. The constraint sets of FTAM provide the identification of OTAM subclasses, the file attributes provide an initial identification of the metadata for those subclasses, and so forth.

Issues

1.6	Persistance vs. OTAM			CT & DC

1.7	OMA Service use in OTAM		CT

1.8	Interface Exposure			CT

1.9	Security Integration			DC

1.10	OODB vs. OTAM				CT

1.11	FTAM Complexity			SS

1.12	Compound Documents vs. OTAM

1.13	Discovery

1.14	How is trader related to virtual file store? Are they the same? how does trader work? As a discover device for how a trader can advertise his wares. You register your file space to a trader. That includes metadata. Others shop by accessing the trader File stores can come and go.

Recommendations

Closing

