
© 2000, James Odell Introduction to Agents Page 1

Introduction to Agents

© 2000, James Odell Introduction to Agents Page 2

A FLOCK IS NOT A BIRD

© 2000, James Odell Introduction to Agents Page 3

A FLOCK IS NOT A BIRD

1) Maintain a minimum distance from other objects,

including other boids.

2) Try to match velocities with the other boids.

3) Try to move towards the perceived center of the

mass of boids in its neighborhood.

Each bird basically reacts to birds nearby by following a set of simple rules.

 In the “boids” simulation of Craig Reynolds, each bird had three simple

rules of behavior:

Most bird flocks have no leader(s). Such

flocks are examples of “self organization.”

Craig Reynolds, DreamWorks SKG, Los Angeles (formerly

from Symbolics Corp.); http://hmt.com/cwr/boids.html

© 2000, James Odell Introduction to Agents Page 4

COORDINATED

WITHOUT A COORDINATOR

Such as,

❏ the photorealistic imagery of bat swarms used in

Batman Returns and Cliffhanger, and

❏ the wildebeest stampede in The Lion King,

❏ also, ant colonies, stadium crowds, highway

traffic, market economies, and immune systems.

StarLogo is descibed in Turtles, Termites, and Traffic Jams by Mitchel Resnick.

Software can be downloaded from http://www.media.mit.edu/~startlogo.

© 2000, James Odell Introduction to Agents Page 5

COMPLEX ADAPTIVE SYSTEMS

A way of thinking about multiagent systems

and their collective behavior

It is the study of the behavior of collections of simple units—

or agents, e.g., atoms, molecules, neurons, people,

that have the potential to adapt and

can give rise to coherent collective behavior.

Also,

System (science) Typical Mechanisms

Nucleus (physics) Quarks, gluons

Atom (physics) Protons, neutrons, electrons

Molecule (chemistry) Bonds, active sites, mass action

Organelle (microbiology) Enzymes, membranes, transport

Cell (biology) Mitosis, meiosis, genetic operators

Multicellular organism (biology) Morphogenesis, reproduction

Social group (biology) Individuals, social relationships

Ecosystem (ecology) Symbiosis, predation, mimicry

And, it can provide scaleability!

© 2000, James Odell Introduction to Agents Page 6

AGENTS CAN BE IMPLEMENTED

IN MANY WAYS

Software

Networks

People

Machines

•••

Agents

Robotics
Automated Manufacturing

Traffic Control
Nuclear Reactor Control

© 2000, James Odell Introduction to Agents Page 7

SOFTWARE AGENTS CAN BE USED

WITH OTHER TECHNOLOGIES

SQL
Rules

Web

Data
warehouses

CORBA Business
re-engineering

Parallel
computing

Virtual
reality

Neural networks

Client-server

Distributed
computing

Logic-based
languages

Repository-based
development

Internet and Web

4GLs

Relational
databases

Object-oriented
languages

Conventional
programming

Object-oriented
databases

Inference engines

Graphic languages

Knowledgebases

Structured
techniques

Visual
programming

Complex
systems

Genetic
algorithms

Fuzzy logic

AI

Software
Agents

© 2000, James Odell Introduction to Agents Page 8

AGENTS STANDARDIZATION

❑ OMG Agents Working Group recommends standards for
agent technology where appropriate—particularly the
OMG's Object Management Architecture (OMA).
(www.omg.org)

❑ FIPA (Federated Intelligent Physical Agents) has been
working to develop and promote standardization in the
area of agent interoperability since 1996. It has an on-
going work program, meeting around the globe on a
quarterly basis, with excess of 50 member organizations.
(www.fipa.org)

❑ US DARPA (Defense Advanced Research Projects
Agency) has several research programs that address
aspects of agent technology. These include:

• Control of Agent-based Systems

• Advanced Logistics Project

• DARPA Agent Markup Language

❑ KQML (Knowledge Query and Manipulation Language)
is a language and protocol for exchanging information and
knowledge. It is part of a larger effort, the ARPA
Knowledge Sharing Effort. (www.cs.umbc.edu/kqml/)

© 2000, James Odell Introduction to Agents Page 9

AGENTS STANDARDIZATION

❑ AgentLink is Europe's ESPRIT-funded Network of Excellence
for agent-based computing. It is a coordinating organisation for
research and development activities in the area of agent-based
computer systems aimed at raising the profile, quality, and
industrial relevance of agent systems in Europe. AgentLink
(www.agentlink.org) divides its activities into four main areas:

• Industrial action

• Research coordination

• Teaching and training

• Infrastructure and management

❑ CLIMATE (Cluster for Intelligent Mobile Agents for
Telecommunication Environments) represents a pool of
agent-related projects within the European Union. CLIMATE was
formed in Spring 1998 and currently comprises 14 core projects,
and investigates various application areas, such as service
control in fixed and mobile networks, telecommunications
management, electronic commerce, and multimedia
applications. For more information, see
www.fokus.gmd.de/research/cc/ecco/climate/climate.html.

© 2000, James Odell Introduction to Agents Page 10

Agents: What are they?

© 2000, James Odell Introduction to Agents Page 11

AGENT

Something that acts—Webster

Some common properties of agents:
• Autonomous - is capable acting without direct external intervention.
• Interactive - communicates with the environment and other agents.
• Adaptive - capable of responding to other agents and/or its environment
• Sociable - interaction that is marked by friendliness or pleasantness
• Mobile - able to transport itself from one environment to another.
• Proxy - may act on behalf of someone or something.
• Proactive - goal-oriented, purposeful; does not simply react..
• Intelligent - state is formalized by knowledge (i.e., beliefs, goals, plans,

assumptions) and interacts with other agents using symbolic language.
• Rational - able to act based on internal goals and knowledge.
• Unpredictable - able to act in ways that are not fully predictable.
• Temporally continuous - is a continuously running process.
• Credible - believable personality and emotional state.
• Transparent and accountable - must be transparent when required, yet

must provide a log of its activities upon demand.
• Coordinative - able to perform some activity in a shared environment with

other agents, via a plans, workflows, or some other process mechanism.
• Cooperative - able to coordinate with other agents to achieve a common

purpose. (Collaboration is a synonymous term)
• Competitive - able to coordinate with other agents where the success of

one agent implies the failure of others (the opposite of cooperative).
• Rugged - able to deal with errors and incomplete data robustly.
• Trustworthy - adheres to Laws of Robotics and is truthful.

© 2000, James Odell Introduction to Agents Page 12

TWO ASPECTS OF AUTONOMY

Dynamic Autonomy
• Can say “Go”
• Reactive vs. proactive
• Determined by agent’s internal

structure

Unpredictable Autonomy
• Can say “No”
• Predictable vs. Unpredictable
• Determined by external

observer

© 2000, James Odell Introduction to Agents Page 13

TWO ASPECTS OF AUTONOMY

Unpredictable:
Can say “No”

Dy
na

m
ic

:
Ca

n
sa

y
“G

o”
Proactive

Passive

Predictable Unexpected

UML/Java
Object

Ant

Ant Colony
Clock

Shopping Agent

GM
Paint
Booth

Object

Reactive

© 2000, James Odell Introduction to Agents Page 14

ASPECTS OF

ADAPTION AND INTERACTION

Adaption

❏ Reaction

❏ Reasoning

❏ Learning

❏ Evolution

Interaction

❏ Communication

❏ Coordination

❏ Cooperation

❏ Competition

} Deliberative

Reactive}

© 2000, James Odell Introduction to Agents Page 15

AGENT

Basic Working Definition

An autonomous entity that can
interact with its environment.

To be useful, agents should —to some extent—
be autonomous, adaptive, and communicative.

agent

sensors

effectors
environment

action

percept

In other words, it is anything that can be viewed as:
• perceiving its environment though sensors, and
• acting upon an environment with effectors.

© 2000, James Odell Introduction to Agents Page 16

SOFTWARE AGENT

❏ In other words, they are agents implemented using

software that

- perceives its environment through its sensors, and

- acts upon an environment with effectors.

❏ They can interact with other kinds of entities—including

humans, machines, and other software agents in various

environments and platforms.

❏ Function CALLs and object messages invoke

operations—they do not involve perception.

❏ Software perception involves receiving external

messages (e.g., requests, events, queries) on which the

agent can choose to act.

An autonomous software entity that

can interact with its environment.

© 2000, James Odell Introduction to Agents Page 17

SOFTWARE TECHNOLOGY

AND AGENTS

Software history is one of increasing

localization and encapsulation.

Agent
Programming

Object-Oriented
Programming

Modular
Programming

Monolithic
Programming

ModularNonmodularUnit
Behavior

Unit
State

Unit
Invocation

Internal
(rules, goals)

External
(message)

Modular Modular

External

External External
(CALLed)

External Internal Internal

Parunak, H. Van Dyke, Autonomous Agent Architectures: A Non-
technical Introduction, Industrial Technology Institute, 10/13/95.

© 2000, James Odell Introduction to Agents Page 18

OO AND AGENTS

Conventional object orientation:

❏ is biased toward class-message-state.

❏ is centrally organized; yet some situations require a

decentralized and self-organized approach (e.g., flocks

of birds and paint stations).

❏ depends on external activation of objects as opposed

to the continuous and concurrent activity of agents.

❏ does not express some business concepts (such as

rules, constraints, goals, and roles and

responsibilities).

❏ OO can be used to enable agent technology.

© 2000, James Odell Introduction to Agents Page 19

AGENT SOFTWARE

with examples of vendors*

*See Appendix for a more complete list.

Languages
❑ Microsoft, Inc.
❑ General Magic, Inc.
❑ Sun, Inc.
❑ Vertel, Inc.
❑ Agentsoft, Inc.
❑ First Virtual Holdings, Inc.

Development environments
❏ Agentsoft
❏ Autonomy
❏ Crystaliz
❏ Firefly Network
❏ FTP Software
❏ Fujitsu
❏ IBM
❏ KYMA Software
❏ MCC
❏ Microsoft
❏ Mitsubishi
❏ ObjectSpace
❏ Oracle
❏ Reticular Systems
❏ Toshiba
❑ Blackboard Technology
❑ Neuron Data, Inc.

Personalization
❑ Broadvision, Inc.
❑ Guideware, Inc.
❑ Agnetsoft, Inc.
❑ Wisewire, Inc.
❑ Aptex, Inc.
❑ Vignette, Inc.
❑ Firefly, Inc.

Research and development
❑ British Telecom
❑ Oracle, Inc.
❑ Digital Equipment Corp
❑ AT&T
❑ Apple Computer, Inc.
❑ Logica, Ltd.
❑ Siemens

Class libraries
❑ Agentsoft, Inc.
❑ IBM, Inc.
❑ General Magic, Inc.
❑ Objectspace, Inc.
❑ FTP Software, Inc.
❑ Crystaliz, Inc.

© 2000, James Odell Introduction to Agents Page 20

HOW WILL WE USE AGENTS?

In general:

❏ Personal use

❏ Interest matching

❏ Network and system management- load balancing, failure
anticipation, problem analysis, and information synthesis.

❏ Information- synthesis, decision, and logistics support

❏ Process control- ensure activities are carried out

❏ Business process management- capable of providing a
variety of services, e.g., multiagent supply chain systems

❏ E-Commerce- with buying, brokering, bidding, and selling
agents

❏ Product design- designing components and subsystems of
a complex product

Some application areas:
❏ Manufacturing
❏ Utilities (electric, gas, telephone)
❏ Information
❏ Retail
❏ Finance (banks, insurance,

stock market)

❏ Health
❏ Government (military, NASA)
❏ Air traffic control
❏ Media
❏ E-Mail
❏ Web personalization
❏ . . .

© 2000, James Odell Introduction to Agents Page 21

Agent Anatomy

© 2000, James Odell Introduction to Agents Page 22

AN AGENT SYSTEM

Agent System = <Agents, Environment, Coupling>

Agent = <State, Input, Output, Process>

State is the set of properties (values, true propositions)
that completely describes the agent.

Input and Output are subsets of State whose
variables are coupled to the environment.

Process is an autonomously executing process that
changes the agent’s State.

Environment = <State, Process>

The Environment has its own Process that can change
its state, independent of the actions of its embedded
agents.

Coupling is a mapping of an agent’s Input and Output
from/to the Environment’s State.

Parunak, H. Van Dyke, Go to the Ant: Engineering Principles from
Natural Multi-Agent Systems, Industrial Technology Institute, 4/4/97.

© 2000, James Odell Introduction to Agents Page 23

AGENT AS A BLACK BOX

Agent
Input

(percepts)

Output
(initiated
actions)

❏ Input - can be whatever the agent “perceives”:

assertions, queries, commands, state

changes—that is, it is richer than OO messages.

❏ Process - interprets the perceived information,

determines its action, and invokes it.

❏ Output - the initiated action, such as a change or

communication to its world.

Process

Environment
and other agents

© 2000, James Odell Introduction to Agents Page 24

AGENT PROCESSING OVERVIEW

Agent

Input Output

The primary purpose of an agent:

❏ is not just to interact with the environment,

❏ but rather to process and interpret the perceived

information and to achieve some goal(s).

D
et

ec
to

rs

Ef
fe

ct
or

s

Parse
Input

Determine
action

Invoke
action

recognize
normalize
representation
deal with
inconsistencies

interpret available
data

examine goals

form plan

determine
mechanism

invoke chosen
actions

State

attribute values
true propositions

© 2000, James Odell Introduction to Agents Page 25

AGENTS CAN MULTIPROCESS

❏ encourages concurrency
❏ minimizes single point of failure
❏ processing threads can communicate directly

– provides fast reaction capability
– causes degradation when there is too much

intercommunication
❏ coordinators can be added to manage and

control multiple threads
– reduces the need to embed all coordination

functionality in every thread
– increases processing overhead

What are some examples of where agents can use multiprocessing?

Input Output

Agent
D

et
ec

to
r

Ef
fe

ct
or

Parse
Input

Determine
action

Invoke
action

Parse
Input

Determine
action

Invoke
action

Parse
Input

Determine
action

Invoke
action

•••

State

© 2000, James Odell Introduction to Agents Page 26

REFLEX AND GOAL-BASED AGENTS

Goal-based agents

Have reflexes, as well as:

❏ Have goals to determine the selection of actions

for a given circumstance.

❏ May optionally weigh the importance of certain

goals (when there are several goals to choose

from or conflicting goals).

D
et

ec
to

rs

Ef
fe

ct
or

sParse
Input

Determine
action

Invoke
action

State

How the
world works

What my
actions do

Goals Weights

© 2000, James Odell Introduction to Agents Page 27

IN THE MEANTIME,

 if we built systems with ant-like simplicity,
we could create something very successful.

❑ Ants have been very successful for a very long time (7 million years).
❏ 15% of the Earth’s biomass is composed of ants— much more than

humans. (Another 17% is termites.)
❏ An ant has about 250,000 brain cells; humans have about 10 billion.

(Simple rules; no intelligence)
❏ Ants can lift 20 times their own body weight. (They may be small, but

they’re more efficient.)
❏ If a person could run as fast for his size as an ant, he would match the

pace of a race horse. (Ditto.)

Simple rules, high fault tolerance—and the colony thrives.
A great first-system model.

What if it were as
hard to get your
deliveries off-
schedule . . .

 . . . as it is to keep ants
out of your kitchen?

© 2000, James Odell Introduction to Agents Page 28

AGENTS AND AGGREGATE AGENTS

Communication can be with individuals as well

as groups via agents defining the interface.

Option 1:
1 Agent,
Single Boundary

Option 2:
2 Agents,
Single Boundary

Option 3:
Layered
Boundaries

Option 4:
Complex
Aggregate

❑ The behavior of the aggregate

is distinct from the behavior of

the parts.

❑ The “membrane” agents

provide the interface definition,

i.e., the “cell” is encapsulated.

© 2000, James Odell Introduction to Agents Page 29

AGENTS AND AGGREGATE AGENTS

Using nature as an analogy

❑ parasitism
❑ symbiosis
❑ mimicry
❑ niche formation
❑ speciation
❑ sexual and asexual reproduction
❑ eukaryotic versus prokaryotic cells
❑ Darwinian evolution
❑ Lamarkian evolution
❑ neuron-based systems
❑ ...

© 2000, James Odell Introduction to Agents Page 30

WHAT GETS AGENTED?

One technique: start with a conceptual-level class diagram and

identify which objects and links are candidates for agent-hood.

An example with one possible solution.

CustomerSale

Stock

Order

Line Item

Mobile manual agentStatic software agent

Mobile software agent

ObjectObject

Stock Control
Static software agent

Object link

Object link

w/ Object

© 2000, James Odell Introduction to Agents Page 31

Agent Communication

© 2000, James Odell Introduction to Agents Page 32

CLIENT-SERVERS ARCHITECTURES

AND SOFTWARE AGENTS

❏ Classical “me client, you server” architecture

is too restrictive for agents.

❏ The peer-to-peer metaphor is closer.

Agents can provide services at one moment

and request services at another.

Furthermore, they can provide

multiple services to multiple agents

at the same time.

© 2000, James Odell Introduction to Agents Page 33

AGENT COMMUNICATION

Agents can communicate with other

agents—as well as with their environment.

In fact, the environment itself can be

treated as an agent, when appropriate.

© 2000, James Odell Introduction to Agents Page 34

INTERAGENT COMMUNICATION

Highly specialized architecture

Federated architecture

Corkill, Daniel D., and Susan E. Lander, "Organizing Software Agents: The Importance of
Design to Effective System Performance," Object Magazine, 8:2, April 1998, pp. 41-47.

facilitator

Uniform-agent architecture

manager

CEO

manager

librarianombudsman
comptroller

administrative
assistant

© 2000, James Odell Introduction to Agents Page 35

A COMMUNICATION ARCHITECTURE

FOR SOFTWARE AGENTS INVOLVES:

❑ Communication protocols
– Unicast - sending a packet when there is only one sender

process and one specific recipient process.
– Broadcast - sending only one packet and all the hosts in

the network recognize and read it.
– Multicast - sending only one packet and all the hosts that

have registered interest recognize and read it.
❑ Application protocols

– Publish/subscribe - decoupled, asynchronous, many-to-
many, event-driven communication.

– Request/reply - decoupled, synchronous, one-to-many,
demand-driven communication.

– Solicit/response - asynchronous request/reply.
❑ Message routing

– Subject-based
– Content-based

❑ Message properties
– Format repository service
– Self-describing format
– Transformation/translation service
– Message priority
– Message expiration

Moreh, Jahan, "Publish & Subscribe: The Power behind Interactive Push
Technology," Distributed Computing, 1:2, January/February, 1998, pp. 23-27.

© 2000, James Odell Introduction to Agents Page 36

STATIONARY VERSUS MOBILE AGENTS

Stationary agents must use the network to
exchange information. This:

✔ reduces complexity required by mobility.
✔ encourages specializations within platforms.
✔ employs well-established protocols.
✔ supports closed-environment philosophy.
✘ results in performance problems in situations

requiring high volume or frequency.
✘ results in processing inefficiencies when the sum

of the specialized agents makes more work than
having a single mobile agent.

✘ reduces effectiveness when a connection is lost.

Many do not believe agent mobility is useful or necessary.

Mobile agents are able to change platforms

and environments; stationary agents are not.

© 2000, James Odell Introduction to Agents Page 37

STATIONARY AGENTS

primarily use the Remote Procedure

Call (RPC) technique for remote work.

remote procedure calls

client

server 1 server 2 server 3

❏ When an agent wants to use the services of
another agent, a message (or request) conveys
the intention to invoke a specific operation.

❏ The operation is then executed and the results
(or reply) is returned to the requesting agent.

❏ Standard client-server protocols.

© 2000, James Odell Introduction to Agents Page 38

MOBILE AGENTS

primarily use the Remote Programming
(RP) technique for remote work.

❏ All structural and behavioral properties of the agent must be
transferred during migration.

❏ Environmental differences must be changed or accommodated.
❏ The big issues:

- How much time it takes to prepare for migration
- How much data is actually transferred
- The performance of the communication
- Server-side burden

❏ Migrations can be handled by the agent which
✔ reduces runtime environment complexity.
✘ increases agent complexity.

❏ Migrations can be transparent to the agent which
✔ reduces agent complexity.
✘ increases runtime environment complexity

client

remote programming

server 1 server 2 server 3

© 2000, James Odell Introduction to Agents Page 39

SINGLE VERSUS

MULTIAGENT APPROACHES

❑ One agent could be constructed that does everything, but
would represent a bottleneck for speed, reliability, etc.

❑ Dividing the functionality among many agents provides
modularity, flexibility, modifiability, and extensibility.

❑ Support distributed processing and problem solving

❑ Specialized knowledge is often not available from a single
agent.

❑ Knowledge is typically spread over various agents.

❑ Single-agent systems are much simpler because they they
don’t deal with cooperation, negotiation, etc.

Single agents have their use, but using many
agents to solve problems can also be useful.

© 2000, James Odell Introduction to Agents Page 40

AGENT ARCHITECTURE

Agent

Agent

Platform

physical

Agent
logical

Agent Agent

Operating
System

migration

Agent
Platform

Traditional
Systems

(e.g., DB, TP)

Agent comunication can be made in two ways:

❏ Directly with each other which

✔provides flexibility and freedom.

✘ bypasses control and security.

❏ Through base software (preferred) which

✔ resolves control and security problems.

✘ requires “logical” communications which are
physically resolved via the base software.

Operating
System

© 2000, James Odell Introduction to Agents Page 41

AGENT ARCHITECTURE

Three layer FIPA Agent Platform

Agent

Management

System

Execution and monitoring of active agents
Basic functionality (API)
- Identification - Query/Search
- Directory Services - Negotiations
- Registration - Mobility

Secure transfer of messages and objects
Secure protocols
Data encryption
Digital signature
Firewalls

Provision of base communication functions
Protocols, document formats
RPC, remote programming
Remote method invocation
Object serialization

Agent Platform

Security

Manager

Agent Platform

Communication

Channel

“FIPA Abstract Architecture Specification,” FIPA Document PC00001, 2000.

© 2000, James Odell Introduction to Agents Page 42

Adaptation

© 2000, James Odell Introduction to Agents Page 43

ADAPTIVE AGENT

Four primary ways of adapting:

❏ reaction - a direct, predetermined response to a

particular event or an environmental signal.

❏ reasoning - ability to make inferences.

❏ learning - change that occurs during the lifetime

of an agent.

❏ evolution - change that occurs over successive

generations of agents.

An agent that responds to

its environment

© 2000, James Odell Introduction to Agents Page 44

ADAPTING BY REACTION

Typically expressed in the form—

 WHEN event, IF condition(s), THEN action:

❏ thermostats

❏ robotic sensors that can detect the presence of a

nearby wall and activate a device for avoiding it

❏ washing machines and vacuum cleaners that use

fuzzy logic

A direct, predetermined response to a

particular event or environmental signal

© 2000, James Odell Introduction to Agents Page 45

ADAPTING BY REASONING

A more advanced form of reactive adaptation using

a set of rules to perform inferencing:

Typically chains of rules in the form—

 WHEN event, IF condition(s), THEN action:

❏ patient diagnosis

❏ bulletin board or web foraging agents

❏ data mining

A reactive response that

uses inference rules.

© 2000, James Odell Introduction to Agents Page 46

ADAPTING BY LEARNING

Typical kinds of techniques:

❏ credit assignment

❏ Bayesian (or probablistic) rules

❏ neural networks

❏ classifier rules

❏ problem-specific structures

Change that occurs during

the lifetime of an agent

© 2000, James Odell Introduction to Agents Page 47

ADAPTING BY EVOLUTION

Typical kinds of strategies:

❏ natural selection, i.e., survival of the fittest

❏ Darwinian versus Lamarckian evolution (e.g.,
genotype and phenotype)

❏ differentiation into ecosystem roles

❏ competition (e.g., increasing returns)

❏ cooperation (e.g., multiagent composition)

❏ coevolutionary arms races

❏ cultural transmission (e.g., Richard Dawkins’
“memes”)

Change that occurs over

successive generations of agents

© 2000, James Odell Introduction to Agents Page 48

ADAPTIVE AGENT

 Four primary ways of adapting

Summary

❏ Reaction (minimum requirement)

❏ Reasoning

❏ Learning

❏ Evolution

}
Any or all in
combination;

e.g. Bayesian
inference with
memes and genes.

© 2000, James Odell Introduction to Agents Page 49

GENETIC PROGRAMMING

 Solving quadratic equations

Familiar formula:

Generated code after 30 generations:

Given: (3 coefficients)
(function set)

Equivalent to: Plus/minus

Koza, John R., Genetic Programming: On the Programming of Computers
by Means of Natural Selection., MIT Press, Cambridge, MA, 1992.

© 2000, James Odell Introduction to Agents Page 50

EVOLUTION OF DESK DESIGNS

Evaluation based on size, mass, flat upper
surface, supportiveness, and unfragmented.

The winner:

design
number 4

After 35
minutes,
20 “perfect”
designs
were
evolved;

but which
Is most
pleasing to
the eye?

Bentley, Peer J. ed., Evolutionary Design by Computers, Morgan Kaufman, San Francisco, 1999.

© 2000, James Odell Introduction to Agents Page 51

EVOLUTION OF HOSPITAL FLOOR PLAN

The GADES application evolved the size and location of 17
departments based on requirements, such as:

❑ Small, heavily constrained site in London (e.g. space,
height, location of entrances and elevators)

❑ Usage frequency and volume, structural considerations
(e.g. weight of equipment), lighting, regulations

❑ The problem was setup in a few hours and the design took 20 minutes.

❑ Generic enough to cope with many different design problems.

❑ An agent could periodically reassess and redesign as necessary.

Bentley, Peer J. ed., Evolutionary Design by Computers, Morgan Kaufman, San Francisco, 1999.

© 2000, James Odell Introduction to Agents Page 52

EVOLUTION OF CREATURES

Karl Sims used genetic algorithms which drove
both physical structure and its “nervous system. “

Physical structure includes:

❑ Nodes (e.g., size, shape, joint
placement)

❑ Connectivity (e.g., position,
orientation, recursion limit)

❑ Joint type (e.g., rigid, revolute,
twist, bend)

Creature control includes:

❑ Sensors (e.g., joint angle sensors,
contact sensors)

❑ Neurons (dataflow neural net style)

❑ Effectors (e.g., controlling joint
degree of freedom, strength)

Creature gene

Bentley, Peer J. ed., Evolutionary Design by Computers, Morgan Kaufman, San Francisco, 1999.

© 2000, James Odell Introduction to Agents Page 53

KARL SIMS EVOLUTION

Creatures evolved for swimming

© 2000, James Odell Introduction to Agents Page 54

KARL SIMS EVOLUTION

Creatures evolved for running

© 2000, James Odell Introduction to Agents Page 55

KARL SIMS EVOLUTION

Video

© 2000, James Odell Introduction to Agents Page 56

Emergence

© 2000, James Odell Introduction to Agents Page 57

EMERGENCE

The appearance of a coherent pattern that arises
out of interactions among simpler objects—
but is more than just their summed behavior.

❏ Agents organize into a larger structure whose dynamics is greater
than the sum of the components’ dynamics.

❏ If a cluster is coherent and stable enough, it can usually serve as a
building block for some larger cluster.

❏ At each level, new emergent structures can form and engage in
behaviors that can lead to further levels of emergence.

❏ Building blocks at one level can combine to form building block at a
higher level.

❏ Collections of agents can be homogeneous or heterogeneous
❏ Emergence is a property of systems, not of agents.

(e.g., 1000 people with $10 million and some stock don’t make a market.)

Complexity is the science of emergence.

© 2000, James Odell Introduction to Agents Page 58

LOCAL INTERACTION,

GLOBAL DYNAMICS

❏ Local interaction can give rise to global dynamics—creating a

coherent structure.

❏ The global dynamics, in turn, can influence the local interaction.

❏ Here, the emergent structure is linked to the local interaction,

– influencing the boundary conditions of the local agents,

– as a result, local agents can adjust to the presence of the

global dynamics,

– which might lead agents to change the conditions under
which the agent behaves.

© 2000, James Odell Introduction to Agents Page 59

EMERGENCE—

USING LIFE AS AN ANALOGY

❏ Living systems are machines:

– Instead of being designed from top down the way
human engineers do,

– living systems emerge from the bottom up from a
population of much simpler systems.

❏ One possibility is that life isn’t just like a computation.
Life literally is a computation.

System (science) Typical Mechanisms
Nucleus (physics) Quarks, gluons
Atom (physics) Protons, neutrons, electrons
Molecule (chemistry) Bonds, active sites, mass action
Organelle (microbiology) Enzymes, membranes, transport
Cell (biology) Mitosis, meiosis, genetic operators
Multicellular organism (biology) Morphogenesis, reproduction
Social group (biology) Individuals, social relationships
Ecosystem (ecology) Symbiosis, predation, mimicry

© 2000, James Odell Introduction to Agents Page 60

LIKE IT OR NOT,

THE WORLD ISN’T STABLE.

It’s full of evolution, upheaval, and surprise.

❏ Business is not a machine, but a kind of living system with all the
spontaneity and complexity of life. New products, technologies,

and markets are constantly arising and old ones are dying off.

❏ Tiny initial differences can produce enormously different effects.
Simple dynamics can produce astonishingly complex behavior.

Holldobler, Bert and Edward O. Wilson, The Ants, Belknap Press, Cambridge, MA, 1990.

A circular mill of army ants
that were cut off from the
colony by rain. The workers
were so attracted to each
other that none left the group.

© 2000, James Odell Introduction to Agents Page 61

Between Chaos and Order

© 2000, James Odell Introduction to Agents Page 62

STEPHEN WOLFRAM’S CLASSIFICATION

OF LONGTIME CA BEHAVIOR

(Courtesy of Andrew Wuensche, generated using his software “Discrete
Dynamic Lab” from http://alife.santafe.edu/alife/software/ddlab.html)

disappears or

becomes

static or

homogeneous

fixed finite

size with

indefinitely

repeating

structures

“chaotic”; little

semblance of

regularity

complex

patterns grow

and contract

irregularly

© 2000, James Odell Introduction to Agents Page 63

BETWEEN ORDER AND CHAOS

The highest average fitness occurs

between ordered and chaotic behavior.

Fitness is maximized between order and chaos.

“The balance point—often called the edge of chaos—is where
the components of a system never quite lock in place and yet
never dissolve into turbulence, either.”

“The edge of chaos is the constantly shifting battle zone

between stagnation and anarchy.”

— M. Mitchell Walthrop

© 2000, James Odell Introduction to Agents Page 64

COEVOLUTION LANDSCAPE

The change in an individual or its

species can alter the fitness

landscape for other members of

the ecosystem.

This can easily become chaotic.

© 2000, James Odell Introduction to Agents Page 65

Decentralization

© 2000, James Odell Introduction to Agents Page 66

DECENTRALIZATION

IS HERE

On December 7, 1991, Boris Yeltsin met with the leaders of the
Ukraine and Belarus. After two days of secret meetings, they
issued a declaration: “The Union of Soviet Socialist Republics,

as a subject of international law and geopolitical reality, is
ceasing its existence.”

The next day, IBM chairman John Akers publicly announced the
decentralization of the computer giant into more than a dozen

semiautonomous business units—each with its own financial
authority and board of directors.

© 2000, James Odell Introduction to Agents Page 67

Example: Top-down, predator-prey models are based on sets of
differential equations, know as the Lotka-Volterra equations:

dn1 / dt = n1 (b - k1n2), dn2 / dt = n2 (k2n1 - d), where:

n1 = population density of prey, n2 = population density of predator
b = birth rate of prey, d = death rate of predators, and
k1 and k2 are constants

Bottom-up would be creating a set of computer creatures that would
interact and evolve.

TOP-DOWN VERSUS BOTTOM-UP
UNDERSTANDING

Lotka-Volterra deals with aggregate quantities (population densities).

 Simulation deals with the behaviors of individual creatures—
from which the population dynamics emerge.

© 2000, James Odell Introduction to Agents Page 68

CENTRALIZATION VERSUS

 DECENTRALIZATION

Conclusion

❏ Resistance to decentralization exists. When people see

a pattern, they often assume control is centralized.

❏ Centralized theories are necessarily wrong. Some

phenomena are described quite well this way.

❏ Obviously, one solution is not right for all situations.

Neither centralized nor decentralized is the solution.

The ones who thrive in decentralized environments

are those who relish (not resist) unpredictability.

© 2000, James Odell Introduction to Agents Page 69

DECENTRALIZATION

 Complexity from simplicity

When constructing agent systems:

❏ You control the action of the parts, not the whole.

❏ You act as a designer, but the resulting pattern is not designed.

❏ Self-organizing patterns are created without a central designer.

❏ You must have many agents acting in parallel to get “critical

mass.” A colony of 10 ants will not be sufficient.

❏ The parts must be interacting—parallelism is not enough.

Without interactions, interesting colony-level behaviors will

never arise.

Remember:

❏ A flock isn’t a big bird.

❏ A traffic jam isn’t just a collection of cars.

© 2000, James Odell Introduction to Agents Page 70

POSSIBLE GENERATIONS

OF AGENT TECHNOLOGY

1 Agents are host based and standalone. They
search the Web/Internet using fetch processing.

2 Agents are host based and capable of negotiating
with computers and other agents, involving many
business (and personal) functions.

3 Agents are mobile and highly personalized, but
standalone.

4 Agents are mobile and capable of negotiating with
computers and other agents.

5 Agents will also employ subagents.

6 Agents can activate and inhabit real-world robotics
and pursue goals beyond software.

7 Agents are self-replicating and can design agents
to specific needs. They are independent and self-
motivating.

Murch, Richard, and Tony Johnson, Intelligent Software
Agents, Prentice Hall, Upper Saddle River, NJ, 1999.

1994–2005

1997–2005

1998–2010

1999–2010

2000–2020

2001–2050

2005–2050

Generation Description
Mainline

Year

