
Page 1

Common Objects in Place-based Collaborative Environments
A Green Paper

Jeff Kurtz, jkurtz@mitre.org
The MITRE Corporation

Introduction
Place-based collaborative environments (PBCEs) facilitate group communication and
information sharing between people who are not collocated. This type of environment
usually presents a virtual place, such as a building or rooms, where people can meet,
conduct conversations and share documents among other things.

Imagine a chat room application coupled with a document repository. Users enter
rooms to chat with other people and they exchange documents via the repository. The
environment consists of rooms, people, a text chat tool and documents. Most PBCEs
maintain these types of elements.

This paper characterizes the common objects of PBCEs and puts forth a sample
data model. There are four primary objects. Context is the setting for collaborative
activities, which is usually a collection of participants, conversations and objects.
Participant represents a user (human or software agent) of the environment. Conference
is a shared, multi-participant session used by participants to communicate with each other
or used by applications to share data. Folder item is a generic item that can be a
container or leaf object such as a document.

Context
Contexts are abstract, metaphor-neutral collections of participants, conversations, and
documents. Contexts factor the total collaborative activity of the system into useful,
comprehensible parts. This concept is a generalization of place-based systems that factor
collaboration based on space. Contexts are gathering places for collaborations and can be
bound to many different representations, metaphors, and purposes; for example, plan
objectives, functions, units, common skills, geographic regions of interest, and so on. For
example, a software development company might have contexts for design, development,
testing, marketing or purchasing. In the testing context you could find people responsible
for testing and test plan documentation.

Contexts are persistent—that is, the context and the documents, tools, and so on
gathered there are continuously available—they do not go away when any or all of their
users disconnect from the system.

Page 2

Figure 1 shows the UML model for the context object. Joining a context returns a
ContextMembership. The membership is used to track participation in the context and to
leave the context. Roster is the set of participants joined to the context.
ConferenceManager manages the set of conferences available when joined to the context.

Figure 1: Context UML

ConferenceManager
<<Interface>>

FolderItem
<<Interface>

Context

name : string
description : string

join(asParticipant : Participant) : ContextMembership
ejectParticipant(participant : Participant) : boolean

<<Interface>>

1..1

+conferenceManager

1..1

1..1
+folder

1..1

ContextMembership

leave() : boolean
addRosterListener(RosterListener : Roster) : void
removeRosterListener(RosterListener : Roster) : void

<<Interface>>

1..1

+context

1..1

Participant
<<Interface>

1..1

+owner

1..1

0..*+participant 0..*

Roster

1..1+roster 1..1

1..*

+participant

1..*

One participant is identified as the owner of the context. The owner could be the
person who created it or it could be assigned to another participant.

The context's participants are all the users who have joined the context. Joined
participants are reachable but not necessarily active in the context

Participant
Participants represent users (human or software agents) of the environment. They track
the contexts a user is participating in and the conferences being used in those contexts.
Each participant may have one or more roles—much as in the workplace, where a single
employee may work on more than one project and may even have different kinds of
duties and different levels of responsibility associated with each project.

Roles are social cues that can be used to indicate a participant’s responsibilities.
For example, a participant in the environment may join one context as a committee
member who needs to participate in discussions, and another context as the person with
authority to sign off on logistic plans.

Page 3

The UML model in Figure 2 shows the attributes and behavior of the participant
object. Setting the home context identifies one context as the participant's default
location. Initial contexts are contexts the participant will participate in as soon as they
connect to the environment. FolderItems and WorkItems can be exchanged via the
participant. FolderItems are items such as documents and WorkItems describe a task to
be performed by the participant.

Figure 2: Participant UML

FolderItem
<<Interface>>

WorkItem

name : string
priority : long
description : string
assignedParticipant : Participant

assign(participant : Participant) : boolean
complete() : boolean

<<Interface>>

Role

name : string
description : string

<<Interface>>

Participant

accountName : string
nickname : string
f ullName : string
emailAddress : string
organization : string
phoneNumber : string
postalAddress : string
f ax : string
image : string

setHomeContext(newHome : Context) : v oid
addInitalContext(membership : ContextMembership) : void
removeInitalContext(ctxt : Context) : v oid
removeContextMember(membership : ContextMembership) : v oid
isMemberOfContext(ctxt : Context) : boolean
giv eFolderItem(item : FolderItem) : v oid
requestFolderItem(item : FolderItem, dest : FolderItem) : boolean
assignWorkItem(item : WorkItem) : boolean
unassignWorkItem(item : WorkItem) : boolean

<<Interface>>

1

+folder

1

0..*

+workitem

0..*

0..*

+role

0..*

ContextMembership
<<Interface>>

0..*

+contextMembership

0..*

When a participant joins a context they communicate to other people using the
conferences managed by that context.

Conference
A conference is a shared, multi-participant session under a single point of control, either
unimodal or multimodal. It is used by participants to communicate with each other
within the virtual environment, and for applications to share data. Examples of kinds of
conferences supported in the toolkit include text conferences, in which users
communicate using basic “chat” capabilities; multicast conferences, in which participants
can use audio and video media; and conferences that allow participants to share and
collaborate on documents, data, and objects. Participants may be active in several
conferences at once; for instance, participants collaborating on a logistics plan might be
sharing data via one conference, and talking about that data via another.

Page 4

As shown in Figure 3, each conference has a name, description, owner and list of
members. After joining the conference the rendezvous is used by client software to
connect to the underlying communication channel. The rendezvous describes the type
and protocol of the conference.

ConferenceManager is found in contexts (see Figure 1) and manages the
conferences for one context.

Figure 3: Conference UML

Conference

id : Conf erenceId
name : string
description : string

join(name : string, password : string) : ConferenceMember
rejoin(member : Conf erenceMember) : boolean
leave() : void
close() : void
isLocked() : boolean
getRendezvous() : Rendezvous
addConf erenceListener(listener : Conf erenceListener) : v oid
remov eConf erenceListener(listener : Conf erenceListener) : void

<<Interf ace>>

ConferenceManager

id : Serv antId
name : string
description : string

close() : void
addConf erence(name : string, conf erence : Conf erence) : boolean
f indConf erence(name : string) : Conf erence
f indConf erence(id : Serv antId) : Conf erence
remov eConf erence(name : string) : v oid
remov eConf erence(id : ServantId) : v oid
addConf erenceManagerListener(conf erenceManagerListener : Conf erenceManagerListener) : v oid
remov eConf erenceManagerListener(conf erenceManagerListener : ConferenceManagerListener) : v oid

<<Interf ace>>

Participant
<<Interf ace>>

ConferenceMember

userName : string
nickname : string
organization : string
startTime : string

<<Interf ace>>

1..11..1 +participant

Rendezv ous

uid : string
type : short
name : string
description : string
protocol : string
f ields : objectSequence
sref : string

isMulticast()
isSocket()
isMessage()
isDataChannel()
isUserDef ined()
isCorbaEventChannel()

0..*

+conf erence

0..*

0..*0..*

+member

1..11..1

+owner

1..1

+rendezv ous

1..1

Page 5

Folder Item
Participants and contexts have folders and documents associated with them. A folder
item can be a container or a leaf object like a document. Folder items have locations and
types. The location is a reference to the associated data in a repository. For example, the
location could be a URL or a document repository identifier. This allows for distribution
of objects across repositories. The mimetype field describes the type of the associated
data.

The UML in Figure 5 shows that FolderItems can contain other folder items. This
allows you to define hierarchies of information. The isContainer method returns true if
the item is a container and false if is a leaf.

Figure 4: FolderItem UML

FolderItem

name : string
description : string
location : string
mimetype : string

lookupByName(name : string) : FolderItem
add(item : JcsFolderItem) : boolean
removeItemByName(name : string) : boolean
removeItem(item : FolderItem) : boolean
isContainer() : boolean
removeFromParent() : boolean
countContents() : long

<<Interface>>

0..1

0..*

+parent

0..1

+child

0..*

Participants can exchange folder items with other participants. They can also
place the items inside a context's folder.

Folder items can refer to any type of information. Software clients for the
environment can use the mimetype information to identify data handlers for presenting
the information to the user.

Building Environments Using these Objects
Taken together these components can be used to build a variety of place-based
collaborative environments. Different user experiences can be created using the same
underlying components.

A complete collaborative environment will consist of component
implementations, factories for instantiating components and directories for distributing
and accessing the components. It will also include one or more client software
implementations. Client software can be tailored to a group's preferred mechanism for
coordinating activities.

Summary
The data model described here is just one abstraction of place-based

collaboration. Undoubtedly, there are others. If you have any comments or alternate

Page 6

approaches please contact Jeff Kurtz (jkurtz@mitre.org, 781-271-2291) or Henry
Rothkopf (henryr@mitre.org).

The sample data model described in this paper is available in the Joint
Collaboration Services (JCS) toolkit. The software development kit is written in Java and
uses CORBA. See http://jcs.mitre.org. The appendix contains more UML models.

Appendix: More UML models

The Login component manages the connections participants make into the environment.
Once a participant logs in they are able to act in the environment. Figure 5 shows the
Login component and the LoginConnection object that is returned by the login method
and used to logout from the environment.

Figure 5: LoginUML

Login

login(accountName : string, password : string) : LoginConnection
lookup(accountName : string) : Participant
page(participants : ParticipantSeq, message : string) : boolean
pageRole(roles : RoleSeq, message : string) : boolean
addLoginConnectionListener(listener : LoginConnectionListener) : boolean
removeLoginConnectionListener(listener : LoginConnectionListener) : boolean

<<Interface>>

Participant
<<Interface> LoginConnection

logout() : boolean

<<Interface>>
0..*+connectedParticipant 0..*

1..1

+connectedParticipant

1..1

Figure 6 shows all the objects discussed above in one UML model. The operations are
not shown to conserve space.

Page 7

Figure 6: Combined UML model, without operations

FolderItem

name : string
description : string
location : string
mimetype : string

<<Interf ace>>

Conf erenceManager

id : Serv antId
name : string
description : string

<<Interf ace>>

LoginConnection
<<Interf ace>>

Login
<<Interf ace>>

0..1

0..*
+parent

0..1

+child

0..*

Conf erence

id : ConferenceId
name : string
description : string

<<Interf ace>>

0..*

+conf erence

0..*

Conf erenceMember

userName : string
nickname : string
organization : string
startTime : string

<<Interf ace>>

0..* +member0..*

Context

name : string
description : string

<<Interf ace>>

1..1 +folder1..1

1..1

+conf erenceManager

1..1

ContextMembership
<<Interf ace>>

1..1+context 1..1

Roster

0..*
+roster

0..*

Role

name : string
description : string

<<Interf ace>>

WorkItem

name : string
priority : long
description : string
assignedParticipant : Participant

<<Interf ace>>

Participant

accountName : string
nickname : string
f ullName : string
emailAddress : string
organization : string
phoneNumber : string
postalAddress : string
f ax : string
image : string

<<Interf ace>>

1..1
+connectedParticipant

1..1

0..*+connectedParticipant 0..*

1

+folder

1

0..*

+contextMembership

0..*
1..1

+owner

1..1

1..1
+participant

1..1
1..1

+owner
1..1

0..*
+participant

0..*

0..*

+participant

0..*

0..*

+role

0..*

0..*

+workitem

0..*

