
Services for Computer Supported Cooperative Work

A Green Paper
Introduction

Place-based collaborative environments (PBCEs) facilitate group communication and information sharing among people who are not collocated. Such environments usually present a virtual place, using a metaphor such as a building or rooms, where people can meet, conduct conversations and share documents, among other things.

Imagine a chat room application coupled with a document repository. Users enter rooms to chat with other people and they exchange documents via the repository. The environment consists of rooms, people, a text chat tool and documents. Most PBCEs maintain these types of elements.

This paper puts forth a generalized object model of PBCEs. There are four primary types of objects. A Context is the setting for collaborative activities, which is usually a collection of participants, conversations and objects. A Participant represents a user (human or software agent) of the environment. A Conference is a shared session used by possibly many participants to communicate with each other, or used by applications to share data. A Folder item is a generic item that can be a container or leaf object such as a document.

Context

Contexts are abstract, metaphor-neutral collections of participants, conversations, and documents. Contexts factor the total collaborative activities of a group into useful, comprehensible parts. This concept is a generalization of place-based environments that factor collaboration based on space. Contexts are gathering places for collaborations and can be bound to many different representations, metaphors, and purposes; for example, plan objectives, functions, units, common skills, geographic regions of interest, and so on. For example, a software development company might have contexts for design, development, testing, marketing or purchasing. In the testing context you could find people responsible for testing and test plan documentation.

Contexts are persistent—that is, they are continuously available—they do not go away when any or all of their users disconnect from the context.

Figure 1 shows a UML model for the context. Joining a context returns a ContextMembership. The membership is used to track participation in the context and to leave the context. Roster is the set of participants joined to the context. ConferenceManager manages the set of conferences available when joined to the context.
Figure 1: Context UML

[image: image1.wmf]ConferenceManager

<<Interface>>

FolderItem

<<Interface>

Context

name : string

description : string

join(

asParticipant : Participant) :

ContextMembership

ejectParticipant(participant : Participant) :

boolean

<<Interface>>

1

..1

+

conferenceManager

1

..1

1

..1

+

folder

1

..1

ContextMembership

leave() :

boolean

addRosterListener(

RosterListener : Roster) : void

removeRosterListener(

RosterListener : Roster) : void

<<Interface>>

1

..1

+

context

1

..1

Participant

<<Interface>

1

..1

+

owner

1

..1

0

..*

+

participant

0

..*

Roster

1

..1

+

roster

1

..1

1

..*

+

participant

1

..*

One participant is identified as the owner of the context. The owner could be the person who created the conference or ownership could be assigned to another participant.

The context's participants are all the users who have joined the context. Joined participants are reachable but not necessarily active in the context.

Participant

Participants represent users (human or software agents) of the environment. They track the contexts a user is participating in and the conferences being used in those contexts. Each participant may have one or more roles—much as in the workplace, where a single employee may work on more than one project and may even have different kinds of duties and different levels of responsibility associated with each project. Roles are social cues that can be used to indicate status within a community of people. The community ascribes meaning to the role, not necessarily the software.

The UML model in Figure 2 shows the attributes and behavior of participant. Setting the home context identifies one context as the participant's default location. Initial contexts are contexts the participant will participate in as soon as they connect to the environment. Each participant has a container for storing FolderItems (e.g., documents). WorkItems, or task descriptions, can be assigned via the participant.

Figure 2: Participant UML

[image: image2.wmf]FolderItem

<<Interface>>

WorkItem

name : string

priority : long

description : string

assignedParticipant : Participant

assign(participant : Participant) :

boolean

complete() :

boolean

<<Interface>>

Role

name : string

description : string

<<Interface>>

Participant

accountName : string

nickname : string

fullName : string

emailAddress : string

organization : string

phoneNumber : string

postalAddress : string

fax : string

image : string

setHomeContext(

newHome : Context) : void

addInitialContext(membership :

ContextMembership) : void

removeInitalContext(

ctxt : Context) : void

removeContextMember(membership :

ContextMembership) : void

isMemberOfContext(

ctxt : Context) :

boolean

giveFolderItem(item :

FolderItem) : void

requestFolderItem(item :

FolderItem,

dest :

FolderItem) :

boolean

assignWorkItem(item :

WorkItem) :

boolean

unassignWorkItem(item :

WorkItem) :

boolean

<<Interface>>

1

+

folder

1

0

..*

+

workitem

0

..*

0

..*

+

role

0

..*

ContextMembership

<<Interface>>

0

..*

+

contextMembership

0

..*

When a participant joins a context they communicate to other people using the conferences managed by that context.

Conference

A conference is a shared, multi-participant session under a single point of control, either unimodal or multimodal. It is used by participants to communicate with each other within the virtual environment, and for applications to share data. Examples of kinds of conferences supported in the toolkit include text conferences, in which users communicate using basic “chat” capabilities; multicast conferences, in which participants can use audio and video media; and conferences that allow participants to share and collaborate on documents, data, and objects. Participants may be active in several conferences at once; for instance, participants collaborating on a logistics plan might be sharing data via one conference, and talking about that data via another.

As shown in Figure 3, each conference has a name, description, owner and list of members. After joining the conference a rendezvous is used by client software to connect to the underlying communication channel. The rendezvous describes the type and protocol of the conference.

ConferenceManager is found in contexts (see Figure 1) and manages the conferences for one context.

Figure 3: Conference UML

[image: image3.wmf]Conference

id :

ConferenceId

name : string

description : string

join(name : string, password : string) :

ConferenceMember

rejoin(member :

ConferenceMember) :

boolean

leave() : void

close() : void

isLocked() :

boolean

getRendezvous() : Rendezvous

addConferenceListener(listener :

ConferenceListener) : void

removeConferenceListener(listener :

ConferenceListener) : void

<<Interface>>

ConferenceManager

id :

ServantId

name : string

description : string

close() : void

addConference(name : string, conference : Conference) :

boolean

findConference(name : string) : Conference

findConference(id :

ServantId) : Conference

removeConference(name : string) : void

removeConference(id :

ServantId) : void

addConferenceManagerListener(

conferenceManagerListener :

ConferenceManagerListener) : void

removeConferenceManagerListener(

conferenceManagerListener :

ConferenceManagerListener) : void

<<Interface>>

Participant

<<Interface>>

ConferenceMember

userName : string

nickname : string

organization : string

startTime : string

<<Interface>>

1

..1

1

..1

+

participant

Rendezvous

uid : string

type : short

name : string

description : string

protocol : string

fields :

objectSequence

sref : string

isMulticast()

isSocket()

isMessage()

isDataChannel()

isUserDefined()

isCorbaEventChannel()

0

..*

+

conference

0

..*

0

..*

0

..*

+

member

1

..1

1

..1

+

owner

1

..1

+

rendezvous

1

..1

Folder Item

Participants and contexts have folders and documents associated with them. A folder item can be a container or a leaf object like a document. Folder items have locations and types. The location is a reference to the associated data in a repository. For example, the location could be a URL or a document repository identifier. This allows for distribution of objects across repositories. The mimetype field describes the type of the associated data.

The UML in Figure 4 shows that FolderItems can contain other folder items. This allows you to define hierarchies of information. The isContainer method returns true if the item is a container and false if is a leaf.

Figure 4: FolderItem UML

[image: image4.wmf]FolderItem

name : string

description : string

location : string

mimetype : string

lookupByName(name : string) :

FolderItem

add(item :

FolderItem) :

boolean

removeItemByName(name : string) :

boolean

removeItem(item :

FolderItem) :

boolean

isContainer() :

boolean

removeFromParent() :

boolean

countContents() : long

<<Interface>>

0

..1

0

..*

+

parent

0

..1

+

child

0

..*

Participants can exchange folder items with other participants. They can also place the items inside a context's folder.
Folder items can refer to any type of information. Software clients for the environment can use the mimetype information to identify data handlers for presenting the information to the user.
Building Environments Using these Objects

Taken together these components can be used to build a variety of place-based collaborative environments. Different user experiences can be created using the same underlying components.

A complete collaborative environment will consist of component service implementations and client software implementations. Support for managing the environment, i.e. the mechanism used to create objects and store them, is implemented in the component services of the PBCE. The behavior exposed to the user is controlled by the client implementation. This puts policy in the client and mechanism in the services.

A client has a Policy, which partly determines the PBCE behavior exposed to the client's users. This allows an organization (typically of humans) to tailor a PBCE toolset to their needs. The PBCE components are configured using this Policy but are not necessarily aware of it.

For example, assume that the OMG organization wishes to customize a PBCE implementation to define clients that register their users' interest in OMG standards, and to define a new conference that enforces parliamentary procedure. First, the OMG would implement the ParlConf component. This new component would define roles for chair, motioner, seconder, etc. A participant could function as chair for the duration of several conferences, yet the roles of motioner and seconder would last only while the topic is discussed (which could still span multiple conferences). When a participant joins the conference their role can be determined by looking at that participant's associated role objects. If they possess the chair role the conference affords them the chair privileges. This assumes that the chair role is given to the participant ahead of time. Alternatively, it could be the case that the first person to join the conference is given that role or it could be ascribed to the person who created the conference. Participants who are motioners and seconders are temporarily given their respective roles.
Continuing the example, the OMG's PBCE environment would consist of contexts that directly correspond to the OMG standards efforts. The client would allow the user to register interest in one or more standards efforts (SIGs, etc.) which would have the side effect of adding the corresponding contexts to the participant's list of initial contexts. When the participant joins a context the client would verify that the user is a member and determine whether the user is a voting member for that effort.

Composing in Other Services

There are several OMG standards that can be composed with this model to extend the capability of a PCBE. They include Workflow Management Facility, Security, E-Commerce, Task and Sessions and others. Writing an adapter from the PCBE model's WorkItem to the workflow management facility's Work Item or Work List would bring workflow capability to the environment. Security mechanisms could be used to make conferences, contexts or folderitem access more secure.

Composition needs to be explored further. A thorough assessment of the extensibility of the model will identify potential points of integration.

Summary

The data model described here is just one abstraction of place-based collaboration. Undoubtedly, there are others. If you have any comments or alternate approaches please contact Jeff Kurtz (jkurtz@mitre.org, 781-271-2291) or Henry Rothkopf (henryr@mitre.org). An implementation of these PCBE services and a sample is available in the Joint Collaboration Services (JCS) toolkit. The software development kit is written in Java and uses a CORBA name service and ORB. See http://jcs.mitre.org. The appendix contains more UML models.

Appendix: More UML models

A Login manages the connections participants make into the environment. Once a participant logs in she is able to act in the environment. Figure 5 shows the Login and the LoginConnection that is returned by the login method and used to logout from the environment.

Figure 5: LoginUML

[image: image5.wmf]Login

login(

accountName : string, password : string) :

LoginConnection

lookup(

accountName : string) : Participant

page(participants :

ParticipantSeq, message : string) :

boolean

pageRole(roles :

RoleSeq, message : string) :

boolean

addLoginConnectionListener(listener :

LoginConnectionListener) :

boolean

removeLoginConnectionListener(listener :

LoginConnectionListener) :

boolean

<<Interface>>

Participant

<<Interface>

LoginConnection

logout() :

boolean

<<Interface>>

0

..*

+

connectedParticipant

0

..*

1

..1

+

connectedParticipant

1

..1

Figure 6 shows the entire object model. The operations are not shown to conserve space.
Figure 6: Combined UML model, without operations

[image: image6.wmf]FolderItem

name : string

description : string

location : string

mimetype : string

<<Interface>>

ConferenceManager

id :

ServantId

name : string

description : string

<<Interface>>

LoginConnection

<<Interface>>

Login

<<Interface>>

0

..1

0

..*

+

parent

0

..1

+

child

0

..*

Conference

id :

ConferenceId

name : string

description : string

<<Interface>>

0

..*

+

conference

0

..*

ConferenceMember

userName : string

nickname : string

organization : string

startTime : string

<<Interface>>

0

..*

+

member

0

..*

Context

name : string

description : string

<<Interface>>

1

..1

+

folder

1

..1

1

..1

+

conferenceManager

1

..1

ContextMembership

<<Interface>>

1

..1

+

context

1

..1

Roster

0

..*

+

roster

0

..*

Role

name : string

description : string

<<Interface>>

WorkItem

name : string

priority : long

description : string

assignedParticipant : Participant

<<Interface>>

Participant

accountName : string

nickname : string

fullName : string

emailAddress : string

organization : string

phoneNumber : string

postalAddress : string

fax : string

image : string

<<Interface>>

1..1

+

connectedParticipant

1..1

0..*

+

connectedParticipant

0..*

1

+folder

1

0..*

+

contextMembership

0..*

1..1

+owner

1..1

1..1

+participant

1..1

1..1

+owner

1..1

0..*

+participant

0..*

0..*

+participant

0..*

0..*

+role

0..*

0..*

+

workitem

0..*

Page 8

_1007901765.doc

Conference

id : ConferenceId

name : string

description : string

join(name : string, password : string) : ConferenceMember

rejoin(member : ConferenceMember) : boolean

leave() : void

close() : void

isLocked() : boolean

getRendezvous() : Rendezvous

addConferenceListener(listener : ConferenceListener) : void

removeConferenceListener(listener : ConferenceListener) : void

<<Interface>>

ConferenceManager

id : ServantId

name : string

description : string

close() : void

addConference(name : string, conference : Conference) : boolean

findConference(name : string) : Conference

findConference(id : ServantId) : Conference

removeConference(name : string) : void

removeConference(id : ServantId) : void

addConferenceManagerListener(conferenceManagerListener : ConferenceManagerListener) : void

removeConferenceManagerListener(conferenceManagerListener : ConferenceManagerListener) : void

<<Interface>>

Participant

<<Interface>>

ConferenceMember

userName : string

nickname : string

organization : string

startTime : string

<<Interface>>

1..1

1..1

+participant

Rendezvous

uid : string

type : short

name : string

description : string

protocol : string

fields : objectSequence

sref : string

isMulticast()

isSocket()

isMessage()

isDataChannel()

isUserDefined()

isCorbaEventChannel()

0..*

+conference

0..*

0..*

0..*

+member

1..1

1..1

+owner

1..1

+rendezvous

1..1

_1008481909.doc

FolderItem

<<Interface>>

WorkItem

name : string

priority : long

description : string

assignedParticipant : Participant

assign(participant : Participant) : boolean

complete() : boolean

<<Interface>>

Role

name : string

description : string

<<Interface>>

Participant

accountName : string

nickname : string

fullName : string

emailAddress : string

organization : string

phoneNumber : string

postalAddress : string

fax : string

image : string

setHomeContext(newHome : Context) : void

addInitialContext(membership : ContextMembership) : void

removeInitalContext(ctxt : Context) : void

removeContextMember(membership : ContextMembership) : void

isMemberOfContext(ctxt : Context) : boolean

giveFolderItem(item : FolderItem) : void

requestFolderItem(item : FolderItem, dest : FolderItem) : boolean

assignWorkItem(item : WorkItem) : boolean

unassignWorkItem(item : WorkItem) : boolean

<<Interface>>

1

+folder

1

0..*

+workitem

0..*

0..*

+role

0..*

ContextMembership

<<Interface>>

0..*

+contextMembership

0..*

_1008483960.doc

FolderItem

name : string

description : string

location : string

mimetype : string

lookupByName(name : string) : FolderItem

add(item : FolderItem) : boolean

removeItemByName(name : string) : boolean

removeItem(item : FolderItem) : boolean

isContainer() : boolean

removeFromParent() : boolean

countContents() : long

<<Interface>>

0..1

0..*

+parent

0..1

+child

0..*

_1007901800.doc

Login

login(accountName : string, password : string) : LoginConnection

lookup(accountName : string) : Participant

page(participants : ParticipantSeq, message : string) : boolean

pageRole(roles : RoleSeq, message : string) : boolean

addLoginConnectionListener(listener : LoginConnectionListener) : boolean

removeLoginConnectionListener(listener : LoginConnectionListener) : boolean

<<Interface>>

Participant

<<Interface>

LoginConnection

logout() : boolean

<<Interface>>

0..*

+connectedParticipant

0..*

1..1

+connectedParticipant

1..1

_1007901815.doc

FolderItem

name : string

description : string

location : string

mimetype : string

<<Interface>>

ConferenceManager

id : ServantId

name : string

description : string

<<Interface>>

LoginConnection

<<Interface>>

Login

<<Interface>>

0..1

0..*

+parent

0..1

+child

0..*

Conference

id : ConferenceId

name : string

description : string

<<Interface>>

0..*

+conference

0..*

ConferenceMember

userName : string

nickname : string

organization : string

startTime : string

<<Interface>>

0..*

+member

0..*

Context

name : string

description : string

<<Interface>>

1..1

+folder

1..1

1..1

+conferenceManager

1..1

ContextMembership

<<Interface>>

1..1

+context

1..1

Roster

0..*

+roster

0..*

Role

name : string

description : string

<<Interface>>

WorkItem

name : string

priority : long

description : string

assignedParticipant : Participant

<<Interface>>

Participant

accountName : string

nickname : string

fullName : string

emailAddress : string

organization : string

phoneNumber : string

postalAddress : string

fax : string

image : string

<<Interface>>

1..1

+connectedParticipant

1..1

0..*

+connectedParticipant

0..*

1

+folder

1

0..*

+contextMembership

0..*

1..1

+owner

1..1

1..1

+participant

1..1

1..1

+owner

1..1

0..*

+participant

0..*

0..*

+participant

0..*

0..*

+role

0..*

0..*

+workitem

0..*

_1007901710.doc

ConferenceManager

<<Interface>>

FolderItem

<<Interface>

Context

name : string

description : string

join(asParticipant : Participant) : ContextMembership

ejectParticipant(participant : Participant) : boolean

<<Interface>>

1..1

+conferenceManager

1..1

1..1

+folder

1..1

ContextMembership

leave() : boolean

addRosterListener(RosterListener : Roster) : void

removeRosterListener(RosterListener : Roster) : void

<<Interface>>

1..1

+context

1..1

Participant

<<Interface>

1..1

+owner

1..1

0..*

+participant

0..*

Roster

1..1

+roster

1..1

1..*

+participant

1..*

