Agent Technology, Green Paper

Version 0.88

DRAFT revision of Section 7 of Agent Technology Green Paper

March 16, 2000
7. The Relationship of Agents and Objects

7.1 Motivation

Why do we care what the relationship is between agents and objects and about agent-object interoperability? There is widespread interest in both technologies and developers are bound to model problems using one or the other technology. So it is inevitable that the two technologies will need to interoperate if not eventually unify. Also, if the two technologies have similar needs (for instance, to define common middleware services for persistence, registration, trading, time, etc), then having to define these twice, separately for each community, and forcing application developers into decisions on whether to use objects or agents, is counterproductive. So there is a very real need for these two related technologies to co-exist, and even more, to become better integrated, so agents can interact with objects and vice versa. From an organizational point of view, the OMG Agent Working Group, in particular, cares about the relationship of agents to objects because it is focusing on agents within a group that is primarily focused on object technology (which broadly includes middleware, interoperability, and domain services), so we have a vested interest in bridging the gap. On a larger scale, the agent community should care about its relationship to pervasive technologies (like the Web, XML, email, distributed objects, etc.) because it needs migration routes and strategies if it is to become widespread and make a pervasive impact. For instance, many view a more semantic, connected web as an evolutionary manifest destiny, and if agents are to play a significant part, then they must interoperate with these other technologies.

In the argument over the relationship of objects and agents, some hold that agents are objects, others that objects are agents, and some that neither is the case. Taking sides in an emotional debate does not seem to hold much promise. Instead, it appears that we can agree on some of the differences, some of the means to reduce the differences, and identify and work on some unresolved issues.
7.2 The problem of defining terms

As described in Section 2 What is an Agent?, there are different ways to define the notion of agent. For instance, intelligent agents might be those that use some form of agent communication language (e.g., KQML or FIPA ACL), ontologies, and content languages; evolutionary agents might be agents that sense their environment and follow simple rules; and so on. Problems with defining the term agent (or object for that matter) will not be repeated here except to point out that identifying what the relationship is depends on what we mean by terms.

7.3 Comparing objects and agents

Below we offer some points of view on how the relationship of objects and agents can be defined. These come in from different angles and might lead to different conclusions. Over the next few years, we will be interested to see how these points of view can be resolved.

7.3.1 How agents are similar to objects

Objects and agents are alike in several ways. In fact, we can assume that conceptually agents are objects or components or entities, in the sense that agents have identity (you can tell one agent from another), they have their own state and behavior (distinct from that of other agents), and they have interfaces by/through which they communicate with each other and with "other things". Like objects, while agents can be any size, development guidelines often suggest constructing agents that are small.

7.3.2 How agents differ from objects

Objects and agents differ in several ways. Some of these are conceptual modeling preferences and some imply mechanism differences.

· Built-in (Intelligent) Functionality - While there isn't any single grain size that characterizes all agents and multi-agent systems, (intelligent) agents can often be considered to be more functional (smarter) than single objects. These agents include complex reasoning components, such as inference engines or neural networks. Often, these resources are implemented as sharable sub-systems, used by many agents, or used as parts of platforms supporting many agents so their presence does not necessarily make agents larger (e.g., in lines of code) than objects but it does mean that agents perhaps have richer built-in interpreters. On the other hand, we might ask, if we add an inference engine inside an object, will it be an agent as "what's inside" is a question of implementation. In this sense, object interfaces can encapsulate "smart things", e.g., more or less smart agents, and human beings; for example, "thompson@objs.com" is the identifier of an interface to which messages can be sent. Object interfaces can also encapsulate "dumb things", e.g., conventional software objects, or dogs ("on the Internet, no one knows you're a dog"). Still, whether implemented as agents natively or as objects with intelligent interpreters inside, there is still a difference in that agents might then be a smart class of objects that communicate using certain shared agent communication assumptions (see below).

· Agents are autonomous and reactive - One of the basic notions about agents is that they are autonomous. They can individually decide whether to respond to messages from other agents. This contrasts with objects that do what they are asked to do (unless forbidden by security or other constraints). Similarly, agents are distinguished as reactive, always listening and participating, in conceptual object terms, containing their own threading capability. Finally, agents are often thought of as proxies for their owners or the things they represent in the real world. In this sense, agents model things that act (e.g., employees) and passive objects might be considered to model things that are acted upon or passive (e.g., equipment).

· Agent Communication Language - (Intelligent) agents use a powerful agent communication language to communicate with each other. They can represent complex belief-desire-intention information, use inference, and change their behavior based on what they learn. In effect, they can respond to different messages over time. Objects, by contract, use a fixed set of messages in communication. OMG objects can support multiple interfaces (for instance, a trader could support public interfaces for listing ads and private interfaces for storing and retrieving ads). On the other hand, objects do have a conceptual need to evolve and take on new roles (from say a child to a parent) but this is not well supported in many object systems.

· Type-instance distinction - At least in many agent systems, agents correspond roughly to object instance or individuals but there is no strongly typed class notion. Rather, the agents are all just agents, not employee agents, equipment agents, etc. Of course, they may become specialized through their content and behavior to effectively become employee agents.

· Inheritance - Object advocates might point out that objects do some things agents do not commonly do, for instance, inheritance is not commonly viewed as an agent aspect though agents are not precluded from supporting some forms of inheritance.

· Other differences - other differences can be highlighted:

· Mobile agents - these appear to be similar if not the same as mobile objects

· Information agents - these might be very like graphs of objects (agents) processing information from data sources and delivering it to customers

· User-interface agents - these may or may not use agent communication language, inference or other agent mechanisms and loose coupling to, for instance, permit new interface agent modalities to be added or others removed from a multimodal agent-based human interface framework.

· Agents that evolve - In some agent subworlds, agents may have additional constraints. For instance, evolutionary agents might be not just be small in lines of code but also small in mass, size, and time.

· Small in Mass - In systems with large numbers of agents, each agent is small in comparison with the whole system. For example, each termite is an almost negligible part of the entire termite hill. As a result, the behavior of the whole is stable under variations in the performance of any single member, and the collective dynamics dominate.

· Small in Time (Forgetful) - Naturally occurring agent systems can forget. Ant pheromones evaporate, and as a result obsolete paths leading to depleted food sources disappear rather than misleading members of the colony. Even the death of unsuccessful organisms in an ecosystem is an important mechanism for freeing up resources so that better adapted organisms can flourish. Furthermore, each transaction can cost an agent, leading to a decrease in energy over time.

· Small in Scope (Local Sensing and Action) - The participants in natural systems usually can sense only their immediate vicinity. In spite of this restriction, they can generate effects that extend far beyond their own limits, such as networks of ant paths or termite mounds. Wolves are built close to the ground and so can’t see very far, but manage to coordinate a hunt with other wolves over a wide area.

In terms of agent support mechansisms (versus objects), it is not clear if these differences should be modeled as constraints on general intelligent agents used to model these subworlds or be used to define a new species of agent called evolutionary agent, as different from intelligent agents as objects are from either.

One more very important way that agents differ from objects is not based on any particular mechanism but rather than on the argument that agents add enough differences to objects to be at a higher (or different) level of abstraction. As such, the problems you use them to solve, the capabilities they have, and the differences in research involved to understand them is fundamentally different for agents. While this is unassailably true, it does not reduce the need for agent and object technology to both be useful and need to become interoperable if both technologies are used together to solve problems.

7.4 Towards coexistence, interoperability, and/or unification of agents and objects

It appears we have some puzzles to resolve. Agents are objects in some ways and clearly different in others. Further, there are different kinds of agents with different kinds of differences. Finally, we want to have our cake and eat it too, that is, we want to use objects and agents together in problem solving. How can we do this? This section catalogs some points of view on how this can be achieved. We are looking for unification so we can simultaneously explain all these viewpoints in a consistent manner. This unification is important for the reasons given in the Motivation section - if we fail to provide paths for agreeing how agents and objects are related, we set up future interoperability problems, as both technologies have overlapping applicability. But the community has not accepted any particular resolution so the jury is still out. If we can agree, we can perhaps get the best of both worlds sooner. Even if we disagree, we should be better able to describe the source of our disagreements.

7.4.1 Agents and agent systems composed from objects and object infrastructure

While we make the case that agents are not the same as objects, this doesn't mean that agents shouldn't be composed out of objects. In fact, many agent systems have been built using object technology (especially using Java), and, indeed it makes sense to build the infrastructure for agent based systems on top of the kind of support systems used for complex object-oriented software systems

When we begin to decompose agent structure, we rapidly find lots of structures and parts that are reasonable expressed as objects. These might include:

· Agent Names

· Agent Communication handles

· Agent Communication Language Components, including:

· Encodings

· Ontologies

· Vocabulary Elements

· Conversation Policies

Beyond the parts that make up agents, there is an additional layer of software components in multi-agent systems that may be naturally viewed as agent middleware, directly analogous to object middleware, and that can be expressed as objects. Examples of such might include:

· Transport References

· Transport Policies

· Directory elements

· Discovery Services

· Logging Services

· Event Services

· Query Services

· and many more

It does not make sense to re-implement these capabilities using agent technology if we can reuse object components and services that effectively do the same thing.

Explaining how object technology can be used to implement agent technology provides one of ways objects and agents can be related but does not really describe how they might interoperate more as equals. It still leaves us (perhaps naively) wanting to model an employee as an agent because employees are active and a stapler as an object because it is passive as opposed using lower level objects for these in some cases and apparently higher level agents in other modeling cases. So we haven't got the whole story yet.

7.4.2 Agents as "objects with an attitude"

It is tempting to assert "An agent is an object that...", completing the phrase in a variety of ways. (Bradshaw 1997b) refers to agents as "objects with an attitude" in the sense of being objects with some additional behavior added, for instance, mobility, inference, etc. Here, we are using objects as a generic modeling or abstraction mechanism, independently of whether agents are implemented as objects (using object-oriented programming techniques).

The viewpoint might help resolve the problem of multiple kinds of agents. In a sense, we could view the maximal agent as potentially having all behaviors found in the agent attributes list, and that degenerate forms of agents are those containing fewer than all properties. In this view, objects are agents without these extra agent attributes. This helps explain how agents might literally be "objects with an attitude." Taking this view, considering agents that use agent communication languages as having the ability to "just say no" to message requests, we can view objects as degenerate agents that always do as they are told.

One can now simultaneously argue that agents are objects and that agents are different from objects. These extra agent capabilities could be added to objects but then they would become agents. The nice thing is, then we have a path for treating agents and objects the same in models and both as first class model elements.

Related to this view, we could distinguish agents that communicate natively as agent-oriented and objects that encapsulate and simulate native agent capabilities as agent-based, in comparison to the traditional, similar distinction between object-oriented and object-based.

7.4.3 Resolving the communication differences

If agents use ACL and objects use message passing to communicate, then it is still not quite clear how agents and objects can coexist. In fact, this difference can be viewed as a defining characteristic of how agents and objects are different. Objects are objects if they can communicate via object messaging and agents are agents if they can communicate via agent communication language.

This observation holds a possible key to how to simultaneously permit both, namely, some entities can do both so they are both objects and agents. This might permit a system to contain agents that use ACL to communicate with other agents, objects that use message passing to communicate with other objects, and some entities that can do both so they are simultaneously objects and agents.

 ============

 agent --> || ACL | object || <-- object

 ============

This point of view might also admit the idea that agents can call objects in an object-oriented way (permitting objects and agents to interoperate as first class objects), that is, behave as objects with respect to objects and so expect objects that they call to return responses in the same way one object expects a response from another that it sends a message to. This might especially be palatable if we view message passing as a subclass of agent messaging.

In a broad way, we might claim that agent messaging and object messaging play similar roles but differ in detail. That is, in some cases the messaging protocols between various kinds of objects will be relatively simple (e.g., conventional object RPC between distributed software objects, or commands sent to hardware), while in other cases they will be more complicated (agent communication language (ACL) sent between agents, or the email flow between people); however, similar abstraction principles can apply to objects at all levels.

But more narrowly, there are differences between object and agent messaging that are not easy to resolve.

7.4.4 Modeling an agent as an object - hard to do

There are several reasons why it is not simple to just model agents as objects directly.

· Expressive limitations

When we model any software entity as an object, we focus on its interfaces and its state. In general, the single key characterization of an agent's behavior is that it accepts messages from other agents, performs some processing and (possibly) responds. This behavior, in terms of interface, may be represented in two forms. One would be to provide a method for every message that the agent is capable of processing. The other would be to provide a single method, AcceptCommunicativeString which would permit the agent to accept arbitrary messages.

It is tempting to imagine providing an agent with a method for each message it can accept. However, we generally want every agent to be able to be able to receive any message, then decide on its own how to process that message. Certainly, the messages it knows how to and decides to process can change over time.

[On the other hand, the messages agents send and receive are not arbitrary - to be understood, they are described in a specific agent communication language with agreed upon semantics and structure. So it might actually make sense for objects that were also agents to be modeled as including the method AcceptACLString. At the same time, it is not satisfying to imagine a large application composed of agents implemented as objects each with one generic method just as it is not satisfying to imagine replacing object methods with a single agent method - too much is lost in this mapping in both directions.]

· Autonomy

Method invocation also has the wrong basic connotations in terms of autonomy. In general, method invocation is done either on the caller's thread of control, or on the thread of a remote proxy for the caller, in the case of remote method invocation. Agents, on the other hand, aren't running as part of the caller, nor are they running with the caller's identity and privileges. In fact, quite the contrary, an agent runs on its own behalf, and with its own identity and privileges While one can imagine doing things with access control such that the additional rights and proper identity were associated with each invocation, it adds steps that are outside the normal notions of method invocation.

Beyond identity and access control rights, we also run into the notion of autonomy. Unlike a normal object, where access control rights and visibility largely encapsulate notions of whether a method should run, an agent is an autonomous element of the software world. Thus, for every message that the agent receives, it may determine, based on its own goals and state, and the state of the ongoing conversation, whether to process the message and how to respond if it does. This implies that every method, will, in effect, begin with the idiom of making such a determination, something which, in general, is beyond what the majority of objects do at method invocation time. (Parameter checking, and comparison to internal state is fairly normal, but knowing the identity of one's caller, and basing decisions on that, is not)

Also, agents are active, not passive entities within a software system. Traditionally, an object is passive, with its methods being invoked under the control of another component of the system. An agent, in general, can react not merely to specific method invocations, but to observable events within the environment. Further, as part of the basic structure of multi-agent systems, it is natural for agents to be engaged in multiple, parallel interactions with other agents.

· Conversations, and long term associations

Another problematic issue for thinking of agent messages as method invocation is the question of long term conversations and associations. Agents, unlike simple objects, may engage in multiple transactions concurrently, either through the use of multiple threads, or similar mechanisms. This is expressed naturally in a messaging environment, as each conversation can be assigned a separate identity, and either a unique message destination or a unique identifier can be used to sort out the threads of discourse.

Similar mechanisms can be built out of objects, of course, but they would bypass, or be in addition to, normal method invocation. One could imagine producing multiple cloned "copies" of the agent object and passing one reference to each counterpart, so as to provide separate communication contexts for each conversation. But the very need to invent this kind of mechanism implies that the agent isn't acting as a simple object.

7.5 Some Issues

The jury is not in. These are some of the challenges that confront us in the area of trying to understand the relationship of objects to agents:

· We know how to wrap legacy code and data with an object wrapper so the legacy code and date can participate in object message passing. Can we do the same thing with code, data (and objects), e.g., wrap them in an agent wrapper so they can communicate as agents? Or do we need to add qualitatively more to turn legacy code into agents? One example of a place where this is important is in agent services. There seem to be useful services like registration, logging, persistence, transactions, matchmaking (trading), administration, replication, security, and many more that agents and agent systems would benefit from. Can we just straightforwardly use object services for these? How important is it to wrap these in agent wrappers to permit them to communicate via ACLs? Is there value in these middleware services having autonomy?

· Can we really add additional features to objects so they become agents? This is consistent with the general view that we progress computer science by adding and packaging useful capability first to climb to abstract data types, then to objects, eventually to agents. It is pretty clear that we added distribution and persistence to objects already. We can similarly add mobility to objects to get mobile objects and most mobile agents are just that. Information agents are generally active objects in a network that implement database-like functions to aggregate data. Traders exist in both the object and agent worlds, playing the same roles. The puzzling cases come when we add BDI, ACL, inference, and ontologies. There does not seem to be an object correlate for these, not yet, at any rate. So maybe our puzzle is, how to deconstruct agents to just add these capabilities.

· If agents are going to be widely useful and common, then how do we go from the current state of practice where agents are in the minority and agent systems are often closed so that agents only communicate with other agents in their own society, to a next generation world where agent technology is comparably dominant to object technology and other possibly related technologies. If agents are to coexist with objects, what implementation changes can be made to add them seamlessly into programming environments like Java of C++? Can we find ways to piggyback agent technology onto other pervasive technologies like email, XML, distributed objects, databases, etc.? Some of the benefits might be scalability and immediate pervasiveness.

In some sense, the burden of getting along with other technologies is a problem for the agent camp - the sooner we provide migration strategies, the sooner agent technology can become more widely available and useful. A way to put the problem in perspective is, pretend you give some application developer an agent toolkit and also conventional tools like scripting languages. At what point will solutions commonly be developed using many of the tools from the agent toolkit? Will they just be used when they are useful, like other tools. For instance, inference might just be used occasionally (perhaps rarely); trading more often; mobility in certain families of situation; and so on.

7.6 Relating agents to OMG

7.6.1 Positioning OMG as the obvious integrating technology

OMG, through CORBA, the OMA framework and its related services, provides almost all of the elements needed to produce a rich framework for supporting agents. Furthermore, through IDL, ORBs IIOP, UML (extended to support agents), and XMI, OMG potentially provides an excellent basis for knitting together abstract agent frameworks instantiated in multiple OMG compatible environments.

Java, with its strong ties to OMG, provides an excellent basis for building Agent Frameworks. Indeed, as mentioned, many agent projects are being built out of Java parts, including Java Beans, RMI, and IIOP. OMG should play a major role in bringing these elements together, and standardizing the usage of various OMG technologies in these areas so as to enhance interoperation and portability.

OMG would need to provide standards in a number of areas, if it desires to act as a major player in the agent arena. Agent Communication Languages, Ontologies, and services for managing these elements would be clear candidates. Infrastructural elements, such as transport factories, agent support platforms and the like would also fall into this purview. See Agent Technology White Paper and Roadmap on OMG Agent WG homepage http://www.objs.com/isig/agents.html.

7.6.2 Integrating Agents in the OMG world view

A more comprehensive proposal would entail integrating agents into the OMG world view as "first class" elements in the overall set of OMG abstractions. This would include supporting the ability of agents and objects to name, invoke and manage each other as first class software elements. Such a proposal would represent a fundamental revisiting of many basic assumptions in the current OMG perspective on software. Such a proposal does not seem warranted today, with the current state of agent technology, and current marketplace acceptance of agent-based systems. However, as the state of the art advances, the Agent Working Group should keep this option available, and, in particular, avoid taking steps that would preclude tighter integration of Agent technologies into the OMG core in the future.

References

Bradshaw, J. (ed.). 1997a. Software Agents. American Association for Artificial Intelligence/MIT Press.

Bradshaw, J. 1997b. An Introduction to Software Agents. In (Bradshaw 1997a).

OMG Document ec/99-12-xx

Page
 of 9

