
Agents for the Masses

CRAIG THOMPSON, TOM BANNON, PAUL PAZANDAK, VENU VASUDEVAN

{thompson, bannon, pazandak, venu}@objs.com

Object Services and Consulting, Inc. (http://www.objs.com)

Abstract. Agent technology has hit pay dirt in the popular press but has received a cooler reception in technical circles as the distributed systems community scrambles to understand what agents really offer, indeed what they really are. Our work as part of the DARPA Control of Agent-based Systems (CoABS) program is aimed at better understanding some of the scalability and system-oriented advantages of agent technology. Specifically we describe:

· an agent reference architecture for use by DARPA CoABS, OMG Agent Working Group, and FIPA

· an agent architectural construct called the "grid" that aims to make it easier to connect distributed software systems together, including helping to explain some systemic properties having to do with scalability, evolvability, and survivability of large systems

· some specific techniques we are prototyping

· lightweight agent communication using XML-encoded ACLs that piggyback on existing transports including email

· agents that talk restricted sub-languages (other than just ACL)

· agent-based trading on the Web

· grand challenge problems

1.0 Introduction

Agent technology is popular enough to have been mentioned in the President's recent State of the Union address, has made it into the top ten list of promising computing technologies that the military is investing in, is routinely mentioned in news articles, and has its own industry standards body. But agent technology "don't get no respect" in some technical circles, and it is not available to the masses in anything like the pervasive form of more mundane, more mature object technology.

This paper considers some of the practical deployment and scaling issues associated with agent technology, outlines a few steps in the right direction, and ends with some grand challenge problems.

2.0 Agent Reference Architecture

One of the puzzles for the technical agent community is to explain what agents are, how they add value that other technologies do not, and how they relate to these other technologies. Another puzzle is to operationally deconstruct agents and agent systems into primitive capabilities that when composed together give a variety of kinds of agent behavior and begin to explain agent and agent system interoperability so agents can migrate from one agent system to another and agent systems can federate into larger agent systems.

One way to proceed is to write an academic taxonomy paper on agents. While useful, this may not have the force of industry behind it. A technically similar but more powerful technology transfer approach is to develop a reference architecture that captures much the same information but in a way that organizes the design space of agents and agent systems with the intent of getting widespread industry agreement on the key (standard) interfaces. This can be accomplished in two main ways:

· industry standards groups can organize the reference architecture

· some pervasive technology implementation can provide a widely available de facto reference implementation.

Both of these routes require a good understanding of the core technology.

[image: image1.jpg]Figure 1: Agent Reference Architecture

AGENT SYSTEM
- single V. muti-agent

Quonm

More common serices
instrumenting, logging

caching
queuing

routing, rerouting
pedigree, drill down

transiation

A oo G0 || st
[
ertirin P o s
S ortrebes ‘
o e
7 T [
* content languages autonomous: AEMANG WED.
= ontologies: decentralized SOt fe ol L Aon
He- T | s O
o] s
i Y |, compeeaton 1
s [| g
| [
‘ offeriacceptidecline
i, e
oy | | sy e,
e nao,
\ S s
1a | secure, trust ’:“'m'ycng
enciypt
e ot s
ot
Fr -
ol
cocs [ovmmany | | posens

query, profile (of metadata)
data fusion
repiication’
gows.
multcast
(scarce)resource morrt,
allocate, deallocate,
monitor,
local, global optimization,
Ioad balancing, negofiation
for resources
scheduling
time, geolocation DDB
rules, constraints.
planning
property list
versioning, config

‘agent properties & kinds
+commurication
capability
*computation capability
*by role in system
infomation agent |'3
- data sources 201
nterfizce agent AICE
*HL, mufmodal
+coop response
«task agont
+webemal agent
- middleware agert
* mobite agent, inesary.

enserbles societies
+#Hofagents +closedvs.. apen,
*teams, peers, communities of interest
contracting, =

- org.responsibiity
*roles, capabilities, | contral, coordination,

« mutual befiefs muti-agent synchronization
« Herarchy - cooperation, compedtion
+ conversational —

policies’

‘adaptation, evolution

via market model,

jaceial, personefity, ONTOLOGY
frtiveor; (Gycting + Ontalingus, OKBC
L * metadata reprosentations
i interests,locations,
spoech acts ACL- availabilty, capabiit,
KQML, FIPA ACL, 0AA pricelcost
[* XM and web cbject modets
L nfrastructure
primitives
 goal interactions e
- discretevs. contimious | | Ltiveads o
« conatraints e s L
+ terative, revision b s
+ workfiow jorae
I “muficast
teaming ~wrappers
by exarple ~logacy sy
i data sources
T
content languages
*KIF, FoL, IDL, ROF
ved= Sun Jini

reen = other DARPA programs.

As part of the DARPA Control of Agent Based Systems (CoABS), we have been helping to develop such a reference architecture [1]. The reference architecture provides several viewpoints on agent technology. For this paper, we just focus on a view of functional areas related to agent technology -- see Figure 1.

The figure shows agent systems on the right side, composed of various kinds of agents (mobile, intelligent, user interface, information access, etc.) which varying kinds of capabilities (agent communication languages, planning ability, etc.).

CoABS is working with both Object Management Group (OMG) Agent Working Group [2] and Foundation for Intelligent Physical Agents (FIPA) [3] on coordinating an agent reference architecture. In addition, CoABS is prototyping parts of the agent reference architecture and is in early discussion with industry groups interested in agent reference implementations.

3.0 Agent Grid

One of the real challenges in large scale use of agents is a tension between agents acting autonomously and some means of assuring system-wide properties of large-scale systems, like security, availability, scalability, survivability, and reliability. The CoABS community has postulated an architectural construction called the grid that provides a plug-in backplane for agent systems. The grid is meant to provide common middle agents (middleware services) and means of managing these. There are still many issues with the grid: how it relates to conventional distributed object middleware, its structure, how it provides assurance of system-wide properties, and how grids are related to agent systems and to other grids. Some of these issues are explored in [4, 5, 6]. The left side of Figure 1 shows properties and services ascribed to the grid.

4.0 Scaling Agent Technology for the Masses
So far, most implementations of agent technology work well on the scale of local area networks but have not been demonstrated to work at web-scales. We have been building three prototypes to understand aspects of how to scale agent technology to larger environments and make agent communication more natural. The first and second focus on agent communication, the former on pervasiveness and the latter on naturalness of communication. The third prototype, like the first, focuses on piggybacking agent technology on more pervasive technologies.

4.1 eGent Prototype

The eGent prototype [7] shown in Figure 2 demonstrates two ideas:

· Encoding agent communication language (ACL) using XML. Advantages are that no special external representation is needed and a standard XML parser can be used to decode the ACL.

· Transporting the externalized ACL via email. The advantage is that email is pervasive, and using email provides a light-weight transport which can route and queue messages even if agents are mobile, intermittently connected, must pass through firewalls and be secure.

[image: image2.jpg]Figure 2: Agents sent by email encoded in XML

_____emacsatatung |||

I e
“haul_perFarmac ve

CPEFERENES Achd aye «/pg rENan)

P A S
biLE

1057 NS Sty

ThETai L renTy o T
£t A ol Eal e e son CHetve rest Hohamed) </ montent -
(GnRaiogy s i 7onEaTaayT

TAnanRaL T /T AnguAgh)
</l _parRAPRARI U0

N N

Parsed varfarmative —

frarder “1on-s asent
dfmatant o mountain o persor (Htve et Mohamed)

Balling for san

L
fradeibarhge
R P w1 v s G b 1)
l Hinniags rar’
BaiTing mr . nesan

4.2 Menu-based Natural Language Interfaces

Agents communicate with each other through sub-languages like agent communication languages, but there must be means for them to communicate with people as well. This will be done in a variety of ways including use of command languages and graphical user interfaces. In addition, it appears likely that agent-based multimodal user interface frameworks will integrate and coordinate a variety of ways for agents to interact with each other and people. Since agents are often acting for humans, it would seem natural if people could communicate with agents using natural language and gesture.

Just considering natural language, agents might receive commands from people in natural language and might explain their behavior to people in natural language. They might even use natural language or restricted special languages to communicate with each other (e.g., toys interacting).

This does not change a long-standing problem with the use of natural language interface technology, namely habitability. It remains difficult for people to understand the limitations (e.g., limited lexicons, grammars, user models, and domain models) of the natural language an agent (application) might use to communicate with people so people will often be frustrated in using unrestricted speech or type-in natural language interfaces.

[image: image3.jpg]Figure 3. Menu-based Natural Language Interface

0t Ll
o Comuars Hob

o

$Address
+ Latitude

Longitude

Name Name
8 Addess Aviadne TIE
Schema

Phone

oo
phone ¢
ongtute
counry
o

“conT™

- R

f v s
oo o

tormat e eport 3| where e persanpreren €15 P

persoisname pems.
« b ersons name. et

BENLI Guory Tranolation #1 B snovm, '
S T T R———. ’ b

- il s 9
sl ol el =
-1 LISTINGI ¥ RWE*BarE0715 1CM” F¥-1LNE ‘BT30S BONE T -HOW P LoF| J0H_ 31 B Typenlret

[P ateress = L e WHERE % NAWE N (o Hanhs, Dic< b, el . Sangnt) ' Later anonemevstomn
S Fanbs, Pish o, i P Fge

As part of our research in agent coordination frameworks, we have been exploring a technology called menu-based natural language interfaces (MBNLI). An example is shown in Figure 3. The user creates a sentence (query or command) by selecting works and phrases from menus. A grammar driven by a domain model (like a collection of DBMS relations) guides the user to only be able to specify sentences the system can understand.

Our research is focusing on how to use MBNLI for human-agent and agent-agent interactions, especially how to attach MBNLI grammars and ontologies as meta data to agents so agents who do not know each other can talk to each other. We are also interested in cooperative response in which agents relax queries or use MBNLI to negotiate.

4.3 WebTrader

The third prototype, like the first, is focused on piggybacking agent technology onto Web technology, in this case, Web search engine technology. One of the more interesting middleware capabilities of many agent systems is the ability to provide a run-time matchmaking or discovery capability.

The WebTrader prototype accepts trader advertisements written as web pages in a combination or human readable format and semi-structured XML. The Web trader can use any search engine(s) to locate trader ads. When a client requests a service, component, grammar, data source, or other kind of advertisement, a search is made and relevant trader advertisements are returned.

[image: image4.jpg]Figure 4. WebTrader Applicati

Ll

: Discovery, Rebinding, Federation

e T ——"

font -

T TR

dezepton

“ionezpo _tm
e
iratare-

e

-rrozigsaver somznt
e

Figure 4 illustrates two capabilities of the WebTrader:

· Service binding and rebinding

· Trader federation

In the demo, trading ads exist for a variety of components (e.g., service agents, clients, and WebTraders). Metadata including color and cost is included in the ads. A Blue client, for example, asks the USA WebTrader to locate a Blue agent implementing a particular interface and with zero cost, if possible. One is found and bound, and the client makes use of the agent. When the agent unexpectedly dies, the WebTrader is consulted again by the client, in case the “state of the world” has changed. It gets back a new list of agents, sorts them by cost, and goes down the list trying each agent until it finds one that works. If the WebTrader fails to respond, the client can fall back on its cached list of previously found agents. When the Yellow client asks the USA WebTrader for Yellow agents, the WebTrader’s initial search turns up none, as it only consults a domain that indexes ads of Red, White, or Blue agents. However, it does find an ad for a WebTrader that knows about Yellow agents, and so passes on the original client query to the Euro WebTrader, which finds a Yellow agent, passes it back to the USA WebTrader, which passes it back to the client, which then uses it to connect to the agent.
5.0 Grand Challenges

In this paper, we have (implicitly) described two grand challenge problems for agent technology,

· Developing an agent reference architecture acceptable to industry and compatible with already pervasive object and Web technologies. Also, developing a complementary agent reference implementation for widespread use.

· Demonstrating how an agent-based grid can be used to lower the cost of developing large and complex software systems where the system must use components developed by third parties, must evolve over a long lifetime to meet new needs, must scale up or down, must be survivable, secure, and highly available.

There are other grand challenges for agents we want to mention as well:

· Demonstrate how agents can be used to create the framework architecture for large applications. These include the scientific challenge problems described in the workshop Call for Papers and also large-scale business challenge problems. In the DARPA environment, one emerging large application that uses decentralized distributed object and agent technology is the Advanced Logistics Program that can develop a large logistics plan in an hour by using logistics subsystems at many distributed sites.

· Demonstrate agent technology as a good architecture for future ubiquitous computing. Sun Jini technology is a step toward extending Java to devices. MEMS and nano technology is around the corner where many tiny devices (sensors, actuators, and wireless communications) will control devices all around us, programmable in a standard manner. We expect that in this world beyond Lego Mindstorms that agent technology will play a key role.

6.0 Conclusion

Several steps remain before agent technology can be viewed as fulfilling its broad promise. This paper has indicated some of the architectural paths (agent reference architectures and the grid), some of the technologies (scalable trader, email and XML based agent communication, menu-based natural language interfaces), some of the technology transition routes (standards, de facto reference implementation), and some of the remaining grand challenges. These won't be the only hurdles but they are some of the significant ones in realizing the objective of agents for the masses.

Acknowledgements

This research is sponsored by the Defense Advanced Research Projects Agency and managed by the U.S. Air Force Research Laboratory under contract F30602-98-C-0159. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency, U.S. Air Force Research Laboratory, or the United States Government.

References

[1]
Craig Thompson, Strawman Agent Reference Architecture, http://www.objs.com/agility/tech-reports/9808-agent-ref-arch-draft3.ppt.

[2]
OMG Agent Working Group, http://www.objs.com/agents/.

[3]
FIPA, http://www.fipa.org/

[4]
Frank Manola, Characterizing Computer-related Grid Concepts, http://www.objs.com/aits/9812-grid-report.html.

[5]
Craig Thompson, Characterizing the Agent Grid, http://www.objs.com/agility/tech-reports/9812-grid.html.

[6]
Frank Manola, Providing Systemic Properties (Ilities) and Quality of Service in Component-Based Systems, http://www.objs.com/aits/9901-iquos.html.

[7]
Venu Vasudevan, FIPA E-Gents: Agents over Computational E-mail, http://www.objs.com/agility/tech-reports/9812-FIPA-Comp-Email-Agents.html.

[8]
Venu Vasudevan and Tom Bannon, WebTrader: Discovery and Programmed Access to Web-Based Services, http://www.objs.com/agility/tech-reports/9812-web-trader-paper/WebTraderPaper.html.

© Copyright 1999. Object Services and Consulting, Inc. Disclaimer: OBJS does not warrant the accuracy or completeness of the information on this page.

1
8

