
1

 DRAFT 24 Aug 1998

Grid Meta Service considerations for the
Control of Agent Based Systems

 WNxxxxxxx
3 Sep 1998

Alan Piszcz
e-mail: apiszcz@mitre.org

McLean, Virginia

2

Table of Contents

ABSTRACT... 3

1.0 INTRODUCTION .. 4
2.0 REQUIREMENTS ... 4
2.1 FIPA DIRECTORY FACILITATOR SPECIFICATION ... 5
2.2 OBJECT MANAGEMENT GROUP MOBILE AGENT FACILITY (MAF) SPECIFICATION 6
2.2.1 OMG MAF NAMING SERVICE AND MAFFINDER [MAF1997] ... 6
2.2.2 OMG MAF AGENT NAMING [MAF1997]... 6
2.2.3 OMG MAF FINDER INTERFACE [MAF1997] .. 7
2.3 D’AGENTS 2.0.. 7
2.4 CMU RETSINA AGENT NAME SERVER ... 8
2.5 MICROELECTRONICS AND COMPUTER TECHNOLOGY CORPORATION (MCC) INFOSLEUTH AGENT

NAME SERVER... 8
2.6 DOMAIN NAME SERVER (DNS) ... 8
2.7 HYPERTEXT TRANSFER PROTOCOL (HTTP) .. 9
3.0 MATCHMAKERS, BROKERS AND RELATED SERVICES ... 9
3.1 FIPA 10TH MEETING ANNEX ON BROKERAGE THROUGH A MATCHMAKER 10
3.2 OBJECT MANAGEMENT GROUP CORBA TRADING OBJECT SERVICE.. 10
3.3 CMU RETSINA MATCHMAKER .. 11
3.4 MICROELECTRONICS AND COMPUTER TECHNOLOGY CORPORATION (MCC) INFOSLEUTH BROKER

11
4.0 CONSIDERATIONS .. 11
4.1 CALL FOR REQUIREMENTS ... 12
5.0 DEVELOPMENT AND TRANSITION PLAN... 12
5.1 GMS STRAWMAN.. 12
5.2 LDAP CHARACTERISTICS ... 14
5.3 GMS ENTITY CANDIDATE DESCRIPTIONS ... 15
5.3.1 DOCUMENTATION, DUBLIN CORE ... 15
5.3.2 GRID MANAGEMENT.. 16
5.3.3 LOCATION.. 16
5.3.4 FIPA DIRECTORY FACILITATOR ATTRIBUTES [FIPA1997] ... 16
5.3.5 SERVICE DESCRIPTION... 16
5.4 PROPOSED DIRECTORY INFORMATION TREE FOR GMS ... 17
5.4.1 DATA HIERARCHY BACKGROUND ... 17
5.4.2 PROPOSED GMS HIERARCHY .. 19
6 PERFORMANCE AND SCALABILITY... 19
7.0 ACRONYMS.. 25
8.0 REFERENCES.. 25

3

ABSTRACT
The Defense Advanced Research Projects Agency (DARPA) Information Systems Office (ISO)
has a new project area named Control of Agent Based Systems (CoABS). One of the goals of
this project is to create an agent-based systems infrastructure with collaboration across other
research projects to standardize on an infrastructure. Services needed by agent-based systems
utilizing this infrastructure include naming, directory (white/yellow pages) and facilitation. Services
such as white pages and/or yellow pages to advertise capabilities of an agent system and
individual agents. For CoABS the notion of a bootstrap service which allows discovery of agent-
based capabilities without using an Agent Communication Language (ACL) may also be an
important capability for integration of the agent-based systems with the information grid
envisioned for the future. This paper describes an Grid Meta Service (GMS) which provides a
potential architecture addressing naming, white/yellow pages and directory services.

4

1.0 Introduction
A service is needed which will convey the following information among agents: agent capabilities,
locations (geographic and logical), agent systems in the grid, pointers and lookup information
where agents may be persisted. Retrieval performance should be high for known/indexed
attributes, and the service should still allow searches on non-indexed information, at the expense
of performance. This service should have the following properties: replication, distributed and
lightweight (CPU resources/disk storage) and accessible in multiple languages and ideally based
on open standard. Clients should be able to access the service using C, JAVA, LISP, PERL, and
shell scripts. The service should allow insert/delete/modify of objects, and additionally provide
security for these operations. This object structure should allow simple storage data items
(strings) and provide storage of binary attributes. Binary attributes may be used to store small
items which may be executable code objects, images, and audio. This service should address a
collection of capabilities normally found in services such as: Yellow Pages, White Pages, Broker,
Meta-protocols (protocols that agents use), Directory Facilitator and Matchmaker (data source
only).

Agent creation in the grid environment entails registering geographic, logical location of owner,
Global unique identifier, services or capabilities it provides, ACL, ontology and other attributes.
Development of this service would require a lightweight, simple and extensible schema, and basic
database query logic support. It should support hundreds of thousands and potentially millions of
entries.

The GMS would store, index, replicate and provide access to all directory type information. This
resource could be made available to the CoABS community for evaluation and potential use. The
ability to access this service should include FIPA ACL, Agent Name Service FIPA, and a non-
agent standards based protocol.

This document will define the rational and functionality of a possible solution for the Grid Meta
Service. Section descriptions follow:
Section 1.0 Introduction
Section 2.0 Requirements Agent Name Servers, Directory Facilitators
Section 3.0 Requirements Matchmakers, Brokers
Section 4.0 Considerations
Section 5.0 Development and Transition Plan
Section 6.0 Performance and Scalability

2.0 Requirements
In order to address the requirements two functional areas are considered. First, the existing
specifications, systems and software were reviewed for directory services. Second, unique
attributes have been defined for further discussion and refinement with CoABS. Since there are a
number of related services from multiple implementations and specifications, an overview is
needed to understand the unique characteristics (if any) for each. This document contains a
review of services that map to white pages, yellow pages, directory facilitators or name services,
and an overview of matchmaking or broker services will be described. Table 2.0-1 provides a
summarization of the sections that follow, it breaks out the topmost level of the Application
Program Interface (API) for each service reviewed. Since similarities exist between the agent
name services and the Internet Domain Name Server a brief review of its characteristics are
provided in this section.

Andrew Sears at the Massachusetts Institute of Technology has proposed similar services for
collaboration services. There are parallels between GMS and the Integrated Conferencing

5

Services [Sears1996] proposes. Sections of his analysis will be included to strengthen certain
discoveries of his work and its association to GMS.

Table 2.0-1 Directory Facilitators Overview

2.1 FIPA Directory Facilitator Specification
"The Foundation for Intelligent Physical Agents (FIPA) is a non-profit association registered in
Geneva, Switzerland. FIPA’s purpose is to promote the success of emerging agent-based
applications, services and equipment. This goal is pursued by making available in a timely
manner, internationally agreed specifications that maximise interoperability across agent-based
applications, services and equipment. This is realised through the open international collaboration
of member organisations, which are companies and universities active in the agent field. FIPA
intends to make the results of its activities available to all interested parties and to contribute the
results of its activities to appropriate formal standards bodies." [FIPA1997]

FIPA describes the following actions for directory facilitation: search, modify, deregister. Agent
Management actions specify additional services we will note for potential inclusion at a later date,
include register-agent, deregister-agent, modify-agent, authenticate, and forward.

White/Yellow Pages, Directory Facilitators

Organization Service Actions
CMU RETSINA Client exists

lookup
register
unregister

Dartmouth D'Agents (none) NA
FIPA97 Agent Name Service deregister

modify
search

IETF Domain Name Server nslookup (eg.)
MAF MAFFinder lookup_agent

lookup_agent_system
lookup_place
register_agent
register_agent_system
register_place
unregister_agent
unregister_agent_system
unregister_place

MCC
InfoSleuth Agent Name
Server

6

2.2 Object Management Group Mobile Agent Facility (MAF)
Specification
The OMG, MAF has a related service for naming agents. Included below is an overview of the
MAF Naming Service and MAFFinder.

Background on MAF
"Mobile agents (also called transportable agents) are a relatively new technology that is fueling a
new industry. Because the technology and the industry are new, mobile agent systems (for
example Crystaliz’s MuBot, Dartmouth College’s AgentTcl, IBM’s Aglets, the Open Group’s MOA,
GMD FOKUS’s JMAF/Magna, and General Magic’s Odyssey) differ widely in architecture and
implementation. The differences among the mobile agent systems prevent interoperability and
rapid proliferation of agent technology, which could in turn impede the growth of the industry. To
promote both interoperability and system diversity, we need to standardize some aspects of
mobile agent technology. This chapter introduces the terminology we use in this submission. It
then assesses what current mobile agent systems have in common in the areas of agent
interaction, agent transfer, and security. After we define the common model, we extract a set of
features to standardize that will promote interoperability and enhance most existing mobile agent
systems. Together, the definitions and the assessment provide a common view of mobile agent
technology." [MAF1997]

2.2.1 OMG MAF Naming Service and MAFFinder [MAF1997]
This is section [2.1] from [MAF1997].
"The CORBA Naming Service binds names (represented as strings) to CORBA objects.
Applications use this service to publish named objects, or to find an object given only the name.
To obtain a reference to a naming service, an application typically bootstraps a reference to a
Naming Context using the ORB::resolve_initial_references operation. This MAF submission
describes two CORBA object interfaces: MAFAgentSystem and MAFFinder. These objects may
be published in the Name Service if the agent system implementor desires. It is not mandatory
that the user do this, but it may offer some programming convenience. For example, an agent
entering a region may use the Name Service to get a reference to the MAFFinder. Agents that
wish to act as CORBA objects may also choose to publish themselves using the Name Service.
Doing so gives applications a way to dynamically get object references to remote agents. Using
this reference, an application can interact with the agent using CORBA RPC. The MAFFinder
interface provides naming and trader services for agents. This interface is defined because
CORBA Naming Service alone does not address the following issues of locating a mobile agent:

• Agents may not be CORBA objects

• Tracking down a mobile agent is likely to require intimate knowledge of the agent system
implementation. (e.g. knowing the log format of the agent system to trace an agent if the agent
system requires an agent to leaves logs)

• mobility of objects is currently not addressed by the CORBA Naming Service Objects such as
stationary agents, places, and agent systems, which are stationary by nature, are more likely to
manifest themselves as CORBA objects, and can be located by the CORBA Naming Service.
Objects such as mobile agents, which are mobile by nature, are better served by the MAFFinder."
[MAF1997]

2.2.2 OMG MAF Agent Naming [MAF1997]
This is section 2.4.1 from [MAF1997]. It is important for the destination agent system to be able to
identify the principal on whose behalf an agent is acting. This is true even when that principal is
not authenticated, because certain applications may find it acceptable to use application-defined
heuristics to evaluate authenticity. An agent system can provide the following information to an
authorized user about an agent that it is hosting:

7

• The agent’s name (principal and identity)

• Whether or not the principal has been authenticated (authenticity)

• The authenticator (algorithm) used to evaluate the agent’s authenticity

CORBA security uses the term principal instead of authority. Secure ORBs exchange security
information about principals when remote operations are invoked. This information is available to
an application, such as an agent system, as a Credential object. If an ORB does not support
security services, however, or a principal is not authenticated, the principal identity information is
not available (if the Credential is available, the only identity will be the Public identity). It is
necessary for agent systems to exchange principal information when agents are transferred. The
information in the Credential, if available, may be used to evaluate the authenticity of the
information exchanged. If the Credential is not available, the agents authenticity is automatically
false.

2.2.3 OMG MAF Finder Interface [MAF1997]
This is taken from section 3.6 from [MAF1997]. The MAFFinder interface provides methods for
maintaining a dynamic name and location database of agents, places, and agent systems. The
interface does not dictate what method a client uses to find an agent. Instead, it provides ways to
locate agents,
agent systems, and places that supports a wide range of location techniques. There are many
possible ways of locating an agent. Here are four possibilities:

• Brute force search
Find every agent system in the region, then send an agent to travel through every agent
system to find the agent.

• Logging
Whenever an agent leaves an agent system, it leaves a mark that says where it is going.
Therefore, an agent system can always follow the logs to locate that agent. There should
also be a way to garbage collect the logs after the agent dies.

• Agent registration
Every agent registers its current location in a database. This database always has the
latest information available about an agent’s location. Note that registering the new
location of an agent does add overhead to the agent go() operation. Therefore, database
operations can be a bottleneck.

• Agent advertisement
Register all the stationary places only. An agent’s location is registered only when the
agent advertises itself. To find a non-advertised agent, the agent system can use a brute
force search or logging.

2.3 D’Agents 2.0
"Agent Tcl is a mobile-agent system that is under development at Darmouth College. Agent Tcl
uses the flexible scripting language Tcl as its main language but provides an framework for
incorporation additional languages. Agent Tcl provides migration and communication primitives
that do not require the programmer to explicitly capture state information and that hide the actual
transport mechanisms but that are low-level enough to be used as building blocks for a range of
protocols." [GRAY1996]

8

D’Agents does not utilize, define or depend on an agent name service, facilitator information or
directory service. Each agent implementation maintains its own internal list of agents and
systems to contact.

2.4 CMU RETSINA Agent Name Server
"The Reusable Environment for Task Structured Intelligent Network Agents (RETSINA) approach
relies on well-known agents and some basic interactions with them. It uses middle agents such
as, matchmakers and Agent Name Servers. Agents request matchmakers for the names of
agents that can provide the required service and use Agent Name Servers to send TCP/IP based
messages. The RETSINA Agent Message Communication architecture is totally independent of
the RETSINA agent system. The RETSINA Agent Name Server is a set of Java programs that
allows your software agents to communicate over the internet." [RETSINA1997]

2.5 Microelectronics and Computer Technology Corporation (MCC)
Infosleuth Agent Name Server
TBD

2.6 Domain Name Server (DNS)
The DNS capabilities have been in service for over 10 years and provide a reliable, distributed
and scalable name service that should be understood when building another naming service.
RFC 1034 and 1035 describe the goals and implementation of DNS.

"The goal of domain names is to provide a mechanism for naming resources in such a way that
the names are usable in different hosts, networks, protocol families, internets, and administrative
organizations. From the user’s point of view, domain names are useful as arguments to a local
agent, called a resolver, which retrieves information associated with the domain name. Thus a
user might ask for the host address or mail information associated with a particular domain
name. To enable the user to request a particular type of information, an appropriate query type
is passed to the resolver with the domain name. To the user, the domain tree is a single
information space; the resolver is responsible for hiding the distribution of data among name
servers from the user. From the resolver’s point of view, the database that makes up the domain
space is distributed among various name servers. Different parts of the domain space are stored
in different name servers, although a particular data item will be stored redundantly in two or
more name servers. The resolver starts with knowledge of at least one name server. When the
resolver processes a user query it asks a known name server for the information; in return, the
resolver either receives the desired information or a referral to another name server. Using these
referrals, resolvers learn the identities and contents of other name servers. Resolvers are
responsible for dealing with the distribution of the domain space and dealing with the effects of
name server failure by consulting redundant databases in other servers. Name servers manage
two kinds of data. The first kind of data held in sets called zones; each zone is the complete
database for a particular "pruned" subtree of the domain space. This data is called authoritative.
A name server periodically checks to make sure that its zones are up to date, and if not, obtains
a new copy of updated zones from master files stored locally or in another name server. The
second kind of data is cached data which was acquired by a local resolver. This data may be
incomplete, but improves the performance of the retrieval process when non-local data is
repeatedly accessed. Cached data is eventually discarded by a timeout mechanism. This
functional structure isolates the problems of user interface, failure recovery, and distribution in
the resolvers and isolates the database update and refresh problems in the name servers."
[Mockapetris1987]

9

Andrew Sears offers a review of Dyanmic DNS.
“One possible directory access protocol is the DNS. Changes to the DNS have been suggested
that would allow for dynamic updates to the directory. These changes actually are designed to
allow users to have write access to their DNS entries, rather than to optimize the directory for
dynamic data, as is the case with dynamic LDAP. The goal of these changes is to allow laptop
computers to change their Internet Protocol (IP) address as they are relocated. It might be
possible to use the DNS as a general-purpose dynamic directory, without changes to the
specification. The primary disadvantage of DNS is that it is not based on records with
attribute/value pairs. This makes it much more difficult to update single parts of the system. In
addition, it limits the extensibility of the system. Even with all the servers it has, DNS's advantage
is reduced by the fact that each would require a software upgrade before it could be used for
dynamic data. The main problem with DNS is that it was never designed to serve as a general-
purpose directory as was LDAP/X.500, and there are currently no plans to use DNS to store white
pages information as there is with LDAP. Plans to modify DNS protocols and develop new
servers do not yet include optimizing the protocol and server for dynamic data, as is being done
for LDAP.” [Sears1996]

2.7 Hypertext Transfer Protocol (HTTP)
HTTP is another possibility for an access protocol to conferencing directories. Its main advantage
is its ubiquity, which allows easy viewing of directories by anyone with a browser. The main
disadvantage of HTTP is that it was designed as a document access protocol rather than a
directory access protocol. It does not include features such as type-specific access to attribute
information, nor does it allow simple tasks like server-based searches. Although it provides
authentication for reads, authentication for writes requires the setup of individual user accounts
for most server designs, which makes implementation difficult. Because HTTP is not designed as
a directory access protocol and lacks much of the functionality needed, it cannot be considered
an appropriate choice for a conferencing directory access protocol, although it could provide read
access to the directory.

3.0 Matchmakers, Brokers and related services
Matchmakers or brokers are services that utilize services like name servers, white and yellow
page directory servers. Brokers have the role of determining which service may be satisfy an
agent request. Figure 3.0.1 provides an overview list of some existing specifications or
implementations for broker and matchmakers. This section is meant to start discussion and
thinking about these services and possible inclusion into the Grid Meta Service.

10

Table 3.0-1 Matchmakers, Brokers and related services Overview

3.1 FIPA 10TH Meeting Annex on Brokerage through a MatchMaker
 "Intelligent brokerage is an important functionality for FIPA agent environments to share
information resources in highly distributed and dynamic environment such as the Internet. In
multi-agent environment, a matchmaker facilitates coordination between agents by various
communication services. In this document, we shall introduce a matchmaker agent and show how
four basic ways of brokerage, subscribing, recommending, brokering, and recruiting, introduced in
[1] can be realized by a matchmaker with FIPA agent environments. These brokerage ways are
well known as basic ways of brokerage within multiple agents and is also useful even for software
brokerage through wrapper agents. By defining matchmaker’s several actions, FIPA agent
community can have these brokerage ways, not only based on current information, but also being
able to cope with dynamic changes of a situation." [FIPA1998]

3.2 Object Management Group CORBA Trading Object Service
“The OMG trading object service facilitates the offering and the discovery of instances of services
of particular types. A trader is an object that supports the trading object service in a distributed
environment. It can be viewed as an object through which other objects can advertise their
capabilities and match their needs against advertised capabilities. Advertising a capability or
offering a service is called “export.” Matching against needs or discovering services is called
“import.” Export and import facilitate dynamic discovery of, and late binding to, services. To
export, an object gives the trader a description of a service and the location of an interface where
that service is available. To import, an object asks the trader for a service having certain
characteristics. The trader checks against the service descriptions it holds and responds to the
importer with the location of the selected service’s interface.” [CORBATrader1997]
“16.2.1 Exporter
An exporter advertises a service with a trader. An exporter can be the service provider

Brokers, Matchmakers
Organization Service Actions
CMU RETSINA Matchmaker getAgent

getAgents
monitor
unregister
update

FIPA98 TC10 Matchmaker ADVERTISE

PROXY
PUBLISH
RECOMMEND
SUBSCRIBE
UNADVERTISE
UNSUBSCRIBE

MCC Infosleuth Broker
OMG Trading Object Service 1.0 Admin

Link
Lookup
Proxy
Register

11

or it can advertise a service on behalf of another.
16.2.2 Importer
An importer uses a trader to search for services matching some criteria. An importer
can be the potential service client or it can import a service on behalf of another.
16.2.3 Service Types
A service type, which represents the information needed to describe a service, is
associated with each traded service. It comprises:
• an interface type which defines the computational signature of the service interface, and
• zero or more named property types. Typically these represent behavioral, non-functional,
and non-computational aspects that are not captured by the
computational signature.” [CORBATrader1997]

3.3 CMU RETSINA MatchMaker
“A matchmaker is abstract database of agents and their advertisement. (An advertisement is a
description of a service that an agent provides). In other words, matchmaker is a like yellow
pages where agents are listed by service (or advertisement) they provide. Once a matchmaker
sends the name of the agent that can provide a certain service (in response to the getAgent
operation), the matchmaker's job is finished. The actual negotiation and task delegation is
handled by the agents themselves. We are in the process of implementing a broker that would
allow an agent to submit a query or a task and would find the right agent to perform that task and
forward the results to the agent. Hence a broker provides complete anonymity to the agents.”
[RETSINAMatchmaker1997]

3.4 Microelectronics and Computer Technology Corporation (MCC)
Infosleuth Broker
TBD

4.0 Considerations
The following recommendations are meant to invoke conversation early in the project
development cycle. These recommendations may need consensus discussion and modification in
the CoABS architecture working group.

Naming, and directory services are going to be a core capability of many of the agent based
systems used in the grid. The author believes it will be one of the most frequently used services.
CoABS will need an early implementation which can grow as developers make future demands
on this service. Choosing a defacto-standard for the service should provide the CoABS team the
ability to influence research issues while leveraging commercial capabilities in this area.

Current commercial directory servers include Microsoft Active Directory, Novell Network Directory
Server (NDS), X.500, Lightweight Directory Access Protocol (LDAP).

If there is an implementation which already addresses all of the requirements, provides source
code of the entire implementation, and is freely available to CoABS we need to identify that
source as soon as possible. Defining the schema of objects for the services would be the next
step.

Documentation of the service with respect to the developers of the systems in CoABS needs to
be available early so they can adapt their agent interfaces to the new services.

This service should not interfere any internal service already in use by an agent platform.

12

This service should allow querying, and control, update, modify, etc., with a non-agent protocol as
well as KQML-Lite and FIPA-ACL.

The implementation plan in section 5.0 should be reviewed for potential development and
implementation into CoABS.

Figure 4.0-1 indicates that GMS should initially provide directory facilitation (DF) services it also
has a close relationship with broker type services. Combining these services may be worth future
consideration.

Figure 4.0-1 Grid Meta Service Relationship to Agent Services

4.1 Call for requirements

ID Type Description
CoABS

Area
Need
Date OS Comments

5.0 Development and Transition Plan
TBD

5.1 GMS Strawman
The GMS architecture should be extensible and support a progressive development plan. Starting
with initial capabilities being available very early in the project. This will allow existing research to
begin use and determine future requirements for objects that the service must handle. As future
protocols, data models and information becomes mature the service should allow flexible updates

Agent Services

AMS

DF

Broker

YP

W

13

by the individual research teams for the objects they are responsible for. Access through via the
Internet may prove essential due the geographical and organizational distribution of the
researchers involved.

The core engine being considered for the GMS is the Lightweight Directory Access Protocol
(LDAP) [Howes1997], a de-facto Internet standard with multiple Request For Comments (RFC)
describing it. It also has a freely distributed implementation from the University of Michigan as
well as a commercial product available from Netscape. In the near future other COTS LDAP
implementations are likely to be available due to its features, and Internet acceptance.

Figure 5.1-1 shows the highest level interface channels available for accessing the GMS. LDAP
will be the standard LDAP protocol available through most languages to learn about system
resources. KQML-LITE and FIPA-ACL will be agent compliant interfaces to the same
information, this will allow future systems and non-domain platform agents to communicate
with the GMS.

Figure 5-1.1: Grid Meta Services Communication Channels

Figure 5.1-2 Grid Meta Services Strawman Architecture

AMS

LDAP

FIPA ACL

KQML-LITE

LDAP Engine
Index, Query

Store, Delete, Modify

Parse Engine
KQML-Lite
FIPA-ACL

Persisted
Store GDBM

Entity
SchemaLDAP standard API

PERL/C/C++/JAVA

KQML-Lite or
FIPA ACL

14

Figure 5-1.2 shows the base components for the strawman vision of the Grid MetaData Service.
The LDAPv3 engine to provide entity storage and query, a parse engine for support of the Agent
Communication languages. The Entity schema and persistence mechanisms are functions of
LDAP.

Figure 5-1.3 illustrates the details of GMS. Shaded portions are components which are available
for use. The remaining items are areas of development and further research.

Figure 5-1.3: Grid Meta Services Architecture

5.2 LDAP Characteristics
LDAP characteristics that make it a viable core engine for GMS.

LDAP (Lightweight Directory Access Protocol)
• Open standards: RFC 1558, 1777, 1778, 1779, 1798, 1823, 1959, 2251,2252, 2253,2554,

2255, 2256.
• Multithreaded
• Multi-platform (Source CODE available)
• Supports add/delete/modify
• Availability: Freely (Univ of Michigan), COTS- Netscape, …
• Support multiple back end databases
• Supports basic logic queries
• Replication support built in (master/slave)
• Referral to other servers built in
• X.500 support

Agent Meta Service Architecture

Univ of Michigan
LDAP Server

GDBM

Object Class
Schema

Object Store
+

Indices

C
 A

P
I

Shell Command
Line Tools

C API

FIPA ACL
Interface

JAVA Application
Parser

JAVA JNDI

KQML-Lite
Interface

JAVA Application
Parser

JAVA JNDI

FIPA - Foundation for Intelligent Physical Agents
GDBM - GNU DataBase Manager
JNDI - Java Naming and Directory Interface
KQML - Knowledge Query Manipulation Language
LDAP - Lightweight Directory Access Protocol

Object Class
Attributes

Command Line
 Interface

C/C++/PERL

C/C++/PERL/JAVA

JAVA IIOP
Network Interface

JAVA IIOP
Network Interface

C/C++/PERL/JAVA

15

• Schema definition support including schema checking
• Hierarchical infrastructure inherent in design
• Should be able to segment services under multiple LDAP domains, (Distinguished Names)
• Provides basic server statistics, # accesses, bytes transferred
• Provides load and dump files in ASCII format for human readability and transport.

LDAP Models: (adapted from page 24 of LDAP [Howes1997])

Information Model: Defines the type of information that can be stored in an LDAP directory.

Naming Model: Defines how information in the LDAP directory can be organized and referenced.

Functional Model: Defines what can be done with the information in an LDAP directory, and how
it can be accessed and updated.

Security Model: Defines how the information in an LDAP directory can be protected from
unauthorized access for modification.

5.3 GMS Entity Candidate Descriptions
The following items are candidates for CoABS GMS objects. Objects for LDAP are data only
items that describe a resource or the characteristics of an agent system.

Figure 5.3-1 Grid Meta Services Entities

5.3.1 Documentation, Dublin Core

One candidate for describing documents and creation information is the Dublin Core MetaData
Element Set [DublinCore1995]. Additionally the GMS should store locations of the documentation
for access.

The metadata elements fall into three groups which roughly indicate the class or scope of
information stored in them:
1] elements related mainly to the Content of the resource,
2] elements related mainly to the resource when viewed as Intellectual Property, and
3] elements related mainly to the Instantiation of the resource.

Dublin Core + URL

Documentation

New

Grid
Management

New

Location

FIPA97 + New

Services

Agent Meta
Services

16

Content Intellectual
Property

Instantiation

Title Creator Date
Subject Publisher Type
Description Contributor Format
Source Rights Identifier
Language
Relation
Coverage

5.3.2 Grid Management
This information is TBD. It may be the location for storing information using Grid specific
language or syntax which is yet to defined.

5.3.3 Location
Global Unique Identifier {agent|agentSystem}
Logical Creator
Logical Location
Physical Location (x,y,z) of creator
Physical Location (x,y,z) of agent if mobile
CreationTime
Time Location Registered

5.3.4 FIPA Directory Facilitator Attributes [FIPA1997]
agent-name
agent-type
agent-services
interaction-protocols
ontology
agent-address
ownership
df-state {active|retired|suspended}

Somewhere the following attributes should be available for each agent in the system if
required. This type of information would be key to building the ’master process equivalent’
in UNIX for the Agent Based Grid.

Disk Requirements {transient|persistent}
Memory Requirement
Platform Requirement
Network Requirement
Geographical location (X,Y,Z) (agent|service)
Expected CPU resource required

5.3.5 Service Description
Service Descriptions should identify an agent service and an address for the service.

[FIPA1997] fipa-man-service-description 9.3.3

17

service-name
service-type
service-ontology
fixed-properties
negotiable-properties
negotiable-properties
communicaiton-properties

other…
Service maps, (name remapping for common services)
Modalities of agent service, (speech, text, vision…)
POC information for agent (who,where,phone,etc)
Pointers or URLs for storage mechanisms (persistence)

5.4 Proposed Directory Information Tree for GMS
The information structure of the GMS is needed in order to access and utilize GMS efficiently. A
brief overview of design concepts is given followed by the proposed tree for GMS.

5.4.1 Data Hierarchy Background

The following section is described in an excerpt below taken from the Netscape Directory Server
Administration Manual.

"The Netscape Directory Server uses a simple database that responds quickly to high-volume
lookup or search operations. Because the database is read much more often than it is written, the
database is tuned for this type of access.

Data hierarchy

 The string representation of an entry's location in an LDAP database is known as a
 distinguished name, or DN.

Data in the directory is arranged in a tree hierarchy. That is, the hierarchy begins at a single point
known as the root and branches down to the location of the directory entries.

Because LDAP is intended to be a global directory service, the top of the Directory Server tree is
traditionally represented by country name, followed by a series of geographic and physical
location information, followed by a common name. For example, a person named Pat Hanson
who works in shipping and receiving for A1 Fishing Supplies in the state of Minnesota, US, would
be located with the following entry:

 Country:
 US
 State:
 Minnesota
 Organization:
 A1 Fishing Supplies
 Organizational unit:
 Shipping and Receiving
 Common name:
 Pat Hanson

18

A different Pat Hanson who works for the same company but in the accounting department would
be uniquely represented with the following entry:

 Country:
 US
 State:
 Minnesota
 Organization:
 A1 Fishing Supplies
 Organizational unit:
 Accounting
 Common name:
 Pat Hanson

Figure 5.4.1-1 Example LDAP directory hierarchy.

Data model

Because LDAP’s data model, known as the schema, is based on the X.500 standard, LDAP
databases can contain a virtually unlimited range of information. X.500 is an international
standard for the global directory structure. Part of the standard is a definition of the kinds of
information that can be included in the directory database.

Types of entries

 The type of data that an entry is defined to contain is known as the entry’s object class.

Every entry in the directory is defined to be of a certain type, or object class. Some object classes
that a directory can hold are as follows:

 Organizational Person--an entry representing a person who is employed by or in some way
 associated with the organization.

19

Residential Person--an entry representing a person who is in the residential environment
(that is, a person who is not a member of the organization).
Organizational Role--an entry representing a position or role within an organization.
Examples might be the postmaster, system administrator, or the help desk.
Device--an entry representing a physical unit that can communicate, such as a modem or a
disk drive.

5.4.2 Proposed GMS Hierarchy
The following is a candidate hierarchy for GMS. Figure 5.4.2-1 illustrates a potential hierarchy for
GMS. The alternate section describes more detail about the top level organization. This
information may be added at a later time, this determination can be deferred since GMS is
expected to initially run as a proprietary service on its own well known TCP/IP port. If worldwide
integration with standard LDAP servers is desired the alternate organizational unit definitions may
be needed.

Figure 5.4-2-1 Grid Meta Services Entities

6 Performance and Scalability
Some development efforts defer performance and scalability until the system integration and test
phase of the effort. Usual reasons include tradeoffs for functionality vs. performance and
scalability. Grid services need metrics to scope the performance envelope as well as define time

root

 c=US

 o=DARPA

 ou=GMS

 ou=CMU ou=MIT ou=Boeing

 o=U.S. Government

 ou=Department of Defense

alternate

 ou=DARPA

 ou=BORG ou=ACAA

person=Point
of Contact

XXXX(FIPA97+extensions)
=agent system information

Documentation=URL

 ou=GRID

Location=(geographical)

20

phased development plans to address these concerns earlier in the process. One case of
performance testing exists and is included for review. The configuration used in the test case
presented by Jeff Hodges is not the typical use pattern. For GMS all typically searches will be
based on indexed attributes, in cases where new searches are causing performance issues index
analysis and implementation would be expected. In case cases where a client needs to perform
multiple lookups, a connection (bind) will be performed once, and the query set applied. A
significant overhead for any small transaction is the setup and connection time, which can be
minimized for multiple queries.

Subject: updated: slapd performance test results
To: ldap@umich.edu
Cc: hodges
From: Jeff.Hodges@stanford.edu
Date: Wed, 10 Jul 96 12:04:36 -0700 (this copy updated 16-Jul-97)

I performed a "let’s max slapd out as much as possible" test yesterday, and have added the info
to the results below. Also, I’d left out that the dbase technology we’re presently using beneath
slapd is gdbm-1.7.3.

Bottom line: I got slapd on a 64mb Sparc 2/Solaris 2.4 to run at a sustained rate of about
1,434,240 "bind/search/unbind" (aka "heavyweight) connections per 24 hr period (i.e. about 16.6
hvywhtConn/sec). It was servicing 44 concurrent clients, each querying the directory as quickly as
possible (given what was going on on them at the time).

Jeff

--
Slapd Testing Results Jeff.Hodges@Stanford.edu
Last updated: 16-Jul-97

Contents:

 Basic server-side test results
 Test setup
 slapd server config...
 Clients config...
 Directory structure...
 Client-side test results
 Client-side perl script

--

Basic server-side test results:

 sustained rate of "heavy weight" query responses generated by
 slapd: 12..16.6/sec

 "heavy weight" queries are composed of...

 bind
 search
 unbind

 ...protocol operations. Each "bind/search/unbind" sequence comprised one query (and
"connection"). Each search was for a known exact match. Search space is described below in

21

"Test setup". A sustained rate of 12 queries/sec translates to answering 1,036,800 queries per 24
hr period. 16.6/sec translates to about 1,434,240/24hr.

Total high-water mark of queries handled by the test server w/o failure: 4,692,130

(it never failed, btw. We had to take the server down due to moving our machine room layout
around, else I would’ve left it all running for several more days)

Note that the "sustained rate" climbed to the high end of the range as I added more clients, and
fell as number of clients decreased.

The "max sustained rate" that this particular slapd server setup can generate seems to be
somewhat less than 17 connections/sec (for this particular style of simple unauthenticated bind
and simple exact-match search for a known name, and number of clients I was able to rustle up).

With about 22 clients, the server was handling connections at the rate of 16.3/sec. I added 22
more clients for a total of 44 and got a rate of 16.6/sec. I ran out of "easily obtained" clients at that
point and so didn’t add any more. Note that this rate was sufficient to, in the vast majority of
connections, service these clients within the range of their TCP timeouts. I got << 100 timeouts
among the 4.5M queries. It is interesting to note that the timeouts were exclusively on "slow" (e.g.
other sparc2) machines and/or heavily-loaded ones. I obtained no timeouts on "fast" machines
(e.g. Dec Alpha 400/233).

Note that this is a "search" test. Doing a similar test where each entry is modified would be very
interesting, especially considering the "dynamic directory service extensions" internet draft.
--

Test setup:

slapd server config...

 slapd 3.3 running on a Sparcstation 2, 64 mb, 1 gig run-of-the-mill disk, Solaris 2.4.

 slapd compiled with SunPro compiler, no optimization, but w/ debugging info (-g)

 Slapd’s default base DN is "o=Stanford University, c=US".

 slapd utilized gdbm-1.7.3 as the underlying database technology. gdbm was compiled with the
SunPro C compiler with "-O".

 slapd was run via the SunPro debugger, with memory access & leak checking OFF.

 Slapd and the debugger were the only active processes of note on the machine.

 NOTE: slapd had the concurrency patches applies (the same ones I posted to ldap@umich.edu
a couple weeks ago)

Clients config...

 Clients varied from a DEC Alpha (64mb, Digital Unix 3.2), to a fair pile (39 in total) of
Sparcstation 20’s (Solaris 2.4).

 Clients utilized the "ldapsearch" tool (part of the umich ldap release). It had been compiled with
the gnu c compiler with -O2.

22

The search space was 20,797 unique names. Each client had access to a flat ascii list of all the
names in the search space. Each client iterated through the entire list over and over, querying the
directory for each name.

There were between 10..44 concurrent clients at any particular time. Each client was querying as
fast as it could given load imposed by other processes on the client machine (some were heavily
loaded with users, a few had effectively no interactive users and querying slapd was all they were
doing) and network delays in contacting the directory server (some clients were on fairly busy
nets, others on lightly-loaded nets).

This client-side was driven by a simple perl script running on each client. (see below).

Directory structure...

 The directory structure being queried was...

 c=US
 |
 o=Stanford University
 |
 ou=People
 |
 <~21K individual entries of objectclass=person>

 The actual ldap query utilized in the test is expressed in the perl script
 shown below.

--
Client-side test results:

I kept client-side logs on a few of the client machines during the above test. These logs provide
query timing information, system load, # of users, and note timeout occurances.

I processed these logs and obtained the histograms shown below.

During the period the test was running, SlowClient (a fairly-heavily loaded Sparc2) had...

2..13 users
load varied roughly between 3..5

To me, the short answer that the histograms below provide is that a simple directory lookup (note
that it is a "heavyweight" query in that it is a bind/query/unbind sequence) will typically cost a
direct user (i.e. a human or a program) 1 sec or less to accomplish in around 90% of the cases on
a machine with operating characteristics similar to SlowClient. 8% of the time the query might
take 1..10 secs. 2% of the time it will take longer. It will very seldom timeout.

And the numbers probably only get better (in general). Take FastClient (see report below). It sez
that 99% of the time the query will take 1 sec or less.

23

SlowClient:

Sparc 20, Solaris 2.4, 64mb, multi-user, 2..13 users during test period, load
varied roughly between 3..5

 *** Timing Log Analysis ***

Analysis of log performed on: Fri Jun 14 12:54:32 1996

First logged timestamp: 13-Jun-1996 08:14:23
Last logged timestamp: 14-Jun-1996 12:53:22

secs # of occurances % of total queries
 0 23706 29
 1 48224 59
 2 1897 2
 3 372 0
 4 56 0
 5 1428 1
 6 3336 4
 7 1337 1
 8 109 0
 9 19 0
 10 109 0
 11 200 0
 12 86 0
 13 3 0
 14 2 0
 15 1 0
 16 3 0
 17 1 0
 18 136 0
 19 116 0
 20 13 0
 21 2 0
 23 8 0
 24 11 0
 42 7 0
 43 11 0

Total number of queries: 81193

Average response time, to the user, for a query was: 1.40 seconds.

[note that this *simple average* is highly skewed by a few of the
queries, approx 2%, taking longer than 10 sec.]

Number of queries that timed out for whatever reason: 1

24

FastClient:

DEC Alpha 400/233, 64mb, OSF/1 3.2a, single user, load average was consistently
less than 1.0 during the test.

 *** Timing Log Analysis ***

Analysis of log performed on: Fri Jun 14 14:51:06 1996

First logged timestamp: 12-Jun-1996 11:12:59
Last logged timestamp: 14-Jun-1996 14:50:55

secs # of occurances % of total queries
 0 84067 43
 1 104604 54
 2 2764 1
 3 25 0
 4 405 0
 5 268 0
 6 49 0
 7 10 0
 8 3 0
 9 8 0
 10 120 0
 11 56 0
 15 1 0
 16 1 0
 22 8 0
 23 2 0
 25 1 0
 27 1 0

Total number of queries: 192393

Average response time, to the user, for a query was: 0.82 seconds.

Number of queries that timed out for whatever reason: 0

--

Client-side perl script:

#!/usr/local/bin/perl
#
QueryForNames.pl
#
a quick hack. takes a list of names on STDIN, and queries
the directory via ldapsearch for each name. The filter is "cn=<name>".
The DN of each entry is printed to stdout, and the query return time
is noted.
#
Example usage:
#
> cat list.of.names | QueryForNames.pl > query.log &; tail -f
query.log
#

while($name = <STDIN>) {
 chop $name;
 open(LDAP, "/usr/pubsw/bin/ldapsearch -h <host> ’cn=$name’ dn |");

25

 while($result = <LDAP>) {
 chop $result;
 ($result,$rest) = split(/,/,$result); # extract just the CN
 $whenItIs = localtime;
 print "$whenItIs; $result\n";
 }
 close(LDAP);
}

end of QueryForNames.pl

--
End of Slapd Testing Results

7.0 Acronyms
API Application Program Interface
CoABS Control of Agent Based Systems
CORBA Common Object Request Broker Architecture
CMU Carnegie Mellon University
FIPA Foundation for Intelligent Physical Agents
IETF Internet Engineering Task Force
LDAP Lightweight Directory Access Protocol
MCC Microelectronics and Computer Technology Corporation
OMG Object Management Group
RETSINA Reusable Environment for Task Structured Intelligent Network Agents
RFC Request For Comment

8.0 References

[CORBATrader1997] Object Management Group, "CORBAservices Trading Object
Service: v1.0", Section 16, March 1997,
ftp://www.omg.org/pub/docs/formal/97-12-23.pdf

[DublinCore1998] Stuart Weibel, Jean Godby, Eric Miller, "OCLC/NCSA Metadata
Workshop Report", Office of Research, OCLC Online Computer
Library Center, Inc., Ron Daniel, Advanced Computing Lab, Los
Alamos National Laboratory, 1995,
http://purl.oclc.org/metadata/dublin_core/

[FIPA1997] Foundation for Intelligent Physical Agents, SWITZERLAND,
1998, http://drogo.cselt.stet.it/fipa/

[FIPA1998] Foundation for Intelligent Physical Agents, "FIPA97’s Developer
Guide, Annex 4 Case Study", 10TH Meeting Working Annex,
SWITZERLAND, 1998,
http://drogo.cselt.stet.it/fipa/spec/fipa98/fipa8717.zip

[Gray1996] Gray. R., "Agent TCL: A flexible and secure mobile-agent system
system", Proceedings of Fourth Annual Usenix Tcl/Tk Workshop,

26

pp. 9-23, 1996. (This document is listed the Overview 2.0
document for D’Agents 2.0)

[Howes1997] Howes T., Smith M, Programming Directory-Enabled
Applications with Lightweight Directory Access Protocol,
Macmillian Technical Publishing, 1997

[MAF1997] OMG’s Common Facility Task Force RFP3, Crystaliz, GMD
FOKUS, General Magic, IBM and The Open Group, “Mobile
Agent Facility Specification”, June 1997,
http://www.camb.opengroup.org/RI/MAF/

[Netscape1998] Netscape, Netscape Directory Server Administration Guide,
Netscape, 1997,
http://help.netscape.com/products/server/directory/1x/UNIX/cont
ents.html

[RETSINA1997] Carnegie Mellon University, "RETSINA Middle Agent Software",
http://www.cs.cmu.edu/~softagents/retsina/ans/java/docs/ansHT
ML/index.html, 1997

[RETSINAMatchmaker1997] Carnegie Mellon University, "RETSINA Middle Agent Software,
Matchmaker", 1997,
http://www.cs.cmu.edu/~softagents/retsina/ans/java/docs/ansHT
ML/matchmaker.html

[Mockapetris1987] Mockapetris P., "DOMAIN NAMES - IMPLEMENTATION and
SPECIFICATION ", RFC 1035, ISI Network Working Group,
1987

 [Sears1996] Sears A., "A Scaleable Directory Schema in LDAP for Integrated
Conferencing Services", MIT Internet Telephony Consortium,
1996, http://itel.mit.edu/icons/compare.html,
http://itel.mit.edu:/itel/directory.html

