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Abstract

The paper explores how Utility Theory (a sub-discipline of microeconomics) can be exploited to define metrics to evaluate the successfulness of survivable systems and that can be used by Survivability Management Systems to plan actions to ensure system survivability.  The current lack of such metrics is a serious impediment to progress in the development of survivability techniques.

1.
Overview of Survivability Concepts

The goal of survivability [1,2] is to provide system-wide integrity well beyond the "islands of integrity" approach of fault tolerance and high availability [3] techniques, which enable reliable data storage and reliable on-line processing respectively.  In survivability, the focus moves from hardening individual components to ensuring that every client has access to the services it requires.  Survivability takes a variety of proactive and reactive steps in an attempt to keep a system in a state such that it can satisfy the expressed current and future needs of the system's users.  To do this, especially using automated tools, requires metrics that can be used to measure the "goodness" of various system configurations that can be reached.  Utility theory provides some of these metrics.

While it is true that high availability is extremely useful in providing survivability, availability can be provided without achieving survivability as illustrated by the following short example taken from our proof of concept survivability service.

Replicated Service Example:  We assume an Object Service Architecture such as CORBA that has been extended to allow a service to be replicated for high availability.  In the example, there are only services and hosts.  Any differences between the hosts or particulars about network topology have been abstracted away.  There are two essential services A and B each made highly available with three replicas.  Each replica consumes an entire host.  In the initial configuration, there are 6 running hosts.  At this point each service is highly available and the system as a whole is survivable.
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A series of failures or an information warfare attack on B might eliminate both of B’s backups leaving A completely intact. A and B's high availability substrate has accomplished its goal.  There has been no change in perceived function or performance despite multiple failures.  However, it is clear that B has become vulnerable.  Since B is essential to the functioning of the system, the system as a whole is equally vulnerable.  The system's survivability is compromised.  The study of availability does not consider the contribution that a service makes to the overall system. 
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A survivability architecture manages the system as a whole.  The ability of this configuration to deliver functionality into the future has been impaired.  If attempts to bring B's replicas back on line fail, the survivability service might try to increase the system wide survivability by sacrificing the availability of A.  Since A and B are equally important, a second replica for B is more important to system wide survivability than a third replica for A.  Once this realization occurs, the system can be reconfigured to improve its survivability.
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After a second replica for B is brought up, this small system is once again balanced.  Given the existing resources, the survivability is maximized even though A is now less available than it was before the adjustment.  The risk of a failure perceived by an end user is minimized.

2.
Measuring Survivability

The usefulness of a survivable system can be judged in several ways: 

· how useful is what it is doing now?

· how useful is it likely to be in the future?

· if it breaks, can it be repaired so that it can again do something useful?   

There are a number of  concepts from utility theory that are helpful in answering these questions.  Collectively, they provide us with metrics that can be used to evaluate the desirability of various system configurations from a survivability perspective.  These can be used to allocate resources, plan administrator actions, shed load appropriately as resources dwindle, and warn users about unstable conditions.

3.
Applying Utility Theory to Survivability

Utility theory is the study of decision making under risk and uncertainty among large groups of participants with differing goals and preferences [4].  A participant has direct control over the decisions he makes, but these decisions are only indirectly linked to their outcomes.  The outcomes depend on the decisions of other participants and random chance.  For example, from the perspective of a system administrator attempting to configure a system to survive a collection of faults and threats, a configuration which continues to provide service is clearly preferred to one that does not.  However, the administrator cannot directly enforce the preferred outcome; he must choose a relatively small number of administrative actions out of a huge number of possibilities and hope these lead to the desired outcome: a system that operates over time.  The actual result will depend on the decisions of other administrators, adversaries, and chance.

The term "utility" is a measure of preference that can be determined and expressed in many different ways.  The most common expressions of utility are the supply and demand curves from microeconomics.  These graphically represent a supplier's utility for revenue and a consumer's utility for a product.  In this case the units are dollars and units sold, both integer values.  Utility can also be expressed as an ordinal preference.  For example, athletes prefer to come in first rather than second and second over third.  A dollar value might be assigned to this preference in professional sports, but this would only be a secondary approximation.  Binary utility is relevant to survivable systems.  If a user absolutely requires a service, that requirement is either met or failed.

The concept of utility can be used to quantify the goodness of states and actions in a survivable system.  System states can be compared using utility measures to determine which is preferred, and as a result, which survival actions should be taken in a attempt to move the system to a better state or avoid worse states.   

The utility of a system state or administrative action depends upon the services that are currently running and the future configurations that can be reached.  Future configurations need to be considered to differentiate between a rigid configuration that offers good current performance from a flexible configuration that offers slightly lower current performance but is more resilient to faults and is more likely to continue offering good performance.  A balance must be reached between present performance and future performance.  For example, for most systems the potential configurations a year in the future are not nearly as important as the configurations the system could reach during the next 12 hours.

Utility can have multiple definitions, depending on the overall goals to be achieved.  For example, one utility function could value maximizing the work performed, another utility function could value minimizing the likelihood that the level of service provided falls below some threshold, and a third utility function could value minimizing the probability that information is divulged to an opponent.  All are equally valid, and depending upon circumstances could in turn be valued to different degrees.  This would result in a combined utility function that would be some aggregation of the underlying utility functions.

We now define a model of the system whose utility will be measured and then present several useful utility measures.   

System Model:  At any point in time, the system is in some configuration. A configuration consists of all the resources in the system and the dependencies between them.  At the lowest level are physical resources such as computers, networks, sensors and actuators.  The dependencies at this layer follow the physical topology of the system.  Layered above the physical resource are services.  A service can depend upon a physical resource or another service to deliver its functionality. The configuration determines the functionality that users perceive at the moment and the constrains the range of functionality that they will perceive in the future.

The configuration of the system can change as events occur. There are three sorts of events which occur: those initiated by possibly automated system administrators, those initiated by Nature, and those initiated by an adversary.  The transitions initiated by administrators are generally beneficial, for example, starting a new replica or shutting down a system for scheduled maintenance.  A detrimental administrator-initiated action such as shutting down the last operational replica in an attempt to repair a different one is relegated to Nature in this analysis.  We blame Nature for the entire spectrum of faults that typically plague a computer installation including power failure, disk crashes, programmer errors and the like.  The only time Nature acts in our favor is when it stops, for example, when it stops raining and our microwave link works again.  An adversary is capable of coordinated malicious actions and deceptions.  These actions include launching viruses, physical destruction of sites, and security violations which compromise sensitive data.

In general, an event can occur at any time. Each event has a probability of occurring within some time interval and events can be correlated.  The probability of a configuration existing at a certain time in the future is computed based on the current configuration and the probabilities of the transitions required to reach the new configuration. The example below shows one configuration, C, at time T1 branching into n possible configurations at T2. 

[image: image4.wmf]C

C

1

C

2

C

3

C

n

T

1

T

2


This computation is necessarily complex because multiple paths of transitions lead to the same configuration.  To simplify the problem, our current analysis divides time into discrete, fixed size intervals, and we concern ourselves only with configurations at time interval boundaries.  This allows multiple events to occur during a time interval.  Under this simplifying assumption, the fanout at each time step is still very large, so exactly calculating the range of possible configurations even a small number of steps into the future is infeasible. Further, calculating the probability that an adversarial action occurs requires game theoretic constructs.  Also, except in trivial cases, transition probabilities can be at best estimated.  In future work, we plan to develop a means to project a configuration along "interesting" paths that provide a representative sample of the space of possible configurations at some future time, to model continuous time and variable size time intervals, and to analyze the effect of imprecise estimates of transition probabilities.
In any configuration, every client of a resource (at any level of abstraction) receives a benefit from receiving the service the resource provides.   This is expressed as a benefit function, B, that maps a description of the service being provided to a value received.  The service to be received can be described in many ways, including using quality of service (QoS) concepts such as timeliness, precision, and accuracy of the results to be provided.  This paper does not address the particular form of a service specification.

The benefit a client receives from a service is accrued only if the service completes its task; i.e., an instantaneous, ephemeral connection to a service provides no value.  Thus, every benefit function must include a duration over which the service must be provided in order to attain the specified benefit.  In principle, this could be a number of invocations or a time period.  In our current analysis we restrict the duration to the fixed size discrete time intervals defined above; a client receives the benefit only if the service is still being provided at the end of the interval.  Again, we hope to generalize this to continuous time and mixed interval sizes in future work.

Utility:  In general, utility is a measure of the desirability an outcome.  In this case, we define the utility of a configuration, U(c), to be the aggregation across all clients in a configuration of the value of the services they receive.  Recall that utility can have multiple definitions, depending on the overall goals to be achieved.  All are equally valid, and depending upon circumstances, could in turn be valued to different degrees.  This would result in a combined utility function that would be some aggregation of the underlying utility functions.  Because there can be multiple utility functions, we differentiate between them using subscripts when necessary; e.g., Uwork(c).  Different utility functions are created by defining different aggregation functions.  Two of these utility measures are discussed in more detail below.  For now, it is sufficient to accept that for any given configuration, it is possible to compute the values of one or more utility functions.  

Expected Utility:   As with the benefit provided to a client by a service, a configuration provides a given utility only for tasks it completes.  In our current model, this is determined at the end of a time interval. Since a system that begins a time interval in some configuration c may end it in some other configuration that provides a possibly different utility (based on the services that it the new configuration provides), a more useful measure of utility is the expected utility of a configuration c, EU(c).   EU(c) measures the benefit of a collection of potential configurations, C, that can be reached from c in one time interval.  It is the probability weighted sum of the utilities of each individual configuration that can be reached.  The probability function, P(ci), is the probability of ci being instantiated out of all the configurations in the set.  Of course, the probabilities must sum to 1.  The set, C, is subscripted with time, so we are measuring the probability that a configuration is instantiated at some particular time in the future. In the notation, a lower case 'c' indicates one particular configuration and an upper case 'C' indicates a probability distribution over a set of configurations.

Expected Utility = EU(c) =
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The above computation assumes that negative (natural and adversary) events can occur at any time during the time interval, but that helpful (administrative) events take place only at interval boundaries.  In other words, it is impossible to fix a problem during an interval.  This is realistic, since administrative actions take some time to complete, whereas natural and adversarial actions, even if they take time, are generally not noticed until their effect on the configuration is felt.

Because there can be more than one base utility function (e.g., Uwork(c)), there will be more than one expected utility function (e.g., EUwork(c)).

Net Utility:  Expected utility allows us to compute the benefit that can be expected to be obtained from a configuration even after considering the near term negative events that can cause the configuration to degrade.  However, we now need another kind of utility measure to allow us to consider longer term changes to the system and to incorporate the ability to perform beneficial administrative transformations.  We call this net utility, NU(c).  Net utility measures the fact that the long term desirability of a configuration depends upon the services that are currently running and the future configurations that can be reached.  Net utility is thus a sum of future expected utilities.  In general, not all time periods are of equal importance; as noted previously, the near term behavior of a system is usually valued more highly than behavior far into the future.  To handle this, we introduce a discount function, D(T), which maps from time to an appropriate weighting factor.  The discount function is related to net present value in finance. 

The following equation calculates the Net Utility, NU(c), of a configuration based on the discount function and Expected Utility, EU(C), defined above. 

Net Utility = 
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In natural language, the equation reads "the net utility of a configuration, c, is the sum of the expected utility of the potential configurations at each time step into the future discounted by the appropriate factor."

Both NU(c) and D(t) are specialized to the particular kind of base utility function; e.g., NUwork(c). 

The use of a discount factor has an additional benefit, since it allows us to discount far future states for computational as well as policy reasons. This has a practical advantage, since as noted previously, when one projects the configuration space further into the future, the computations rapidly become more expensive (due to state explosion) and the results rapidly become less precise (due to imprecise estimates of event probabilities).  The benevolent myopia introduced by the discount factor allows us to ignore incomputable or dubious future states.

Alternative Utility Metrics:  The meaning and power of the utility functions defined above vary greatly depending on the precise definition of the base utility function U(c).  As noted above, the base utility function measures what is valued most highly.  We now describe two possible metrics.

The first survivability metric we developed, Utility of Value, was based on a measure for aggregate performance.  This work developed from a market based, distributed resource allocation prototype.  The goal of the market was to maximize the value of all the services provided by the system.  End users or administrators would assign values to services.  The resources, both hardware and software, would compete to offer the best service at the lowest cost.  The resources' goal was to accumulate profits which would be gathered by the owners of the resources and allocated to end users and administrators closing the loop.  

Utility of Value is sufficient to solve the problem presented in the example at the beginning of the paper.  If users value a service highly, it will replicate itself to assure that it is highly available.  If resources are removed from the system, the prices will rise and only the more valued services will obtain resources.  Likewise if resources are added, prices will fall and lower priority services will run.  It implements a simple microeconomic model that tends toward Pareto Optimality, a local optimality criterion.  

If the Net Utility of Value is maximized, then future performance of the system will be maximized.  There are many possible definitions of survivability, but a relatively straightforward one is that the system continues to offer good performance into the future.  Value ranges over the integers depending on how well the system is performing.  More value is always better and less is always worse.  

Our second metric, Utility of Operation, is based on a binary measure depending on whether the system meets some minimal level of operation over a given interval.  This gives rise to a very different notion of survivability.  Using this measure, EU(C) is itself a probability: the probability that the system is operational.  Maximizing the Net Utility of Operation minimizes the possibility of some catastrophic failure in the future, possibly at the cost of optimal average case performance.  This is arguably a better survivability metric than the Net Utility of Value, since the purpose of survivability is to avoid catastrophic failures.  The two could be used in conjunction so that after a minimal level of service is guaranteed, performance is optimized for the normal case.

Note that both Utility of Value and Utility of Operation differ significantly from resource utilization in that they measure the perceived benefit of the system, not how hard the system is working. 

4.
Examples 

We now present four examples to illustrate how Utility of Value and Utility of Operation are computed and the differences between them.

Example 1:  The example with which we began the paper is a simple illustration of Utility of Value.  Returning to the example above, three configurations are illustrated.  We will quickly review the example with a condensed notation.  There are two services, A and B, and six hosts, 1 - 6.  In the initial configuration, C1, each service has three replicas: C1 = A{1, 2, 3}; B{4, 5, 6}.  After the failure, B loses two replicas, C2 = A{1, 2, 3}; B{4}.  The third configuration, C3, is the result of a possibly automatic administrative action which trades a second backup from A to provide a single backup for B, C3 = A{1, 2}; B{4, 3}.  This last transition is voluntary.  The administrator or survivability service would take what ever action seemed best.

The system is very simple and in this analysis we will look only one time step into the future and consider two possible transitions, failure and startup.  Each service, A and B, is given a theoretical value of 1000 and requires an entire host for a primary or a backup.  This value is only reached if the service runs without error through the period.  There is a 10% probability of failure of each host during a period, so the probability of success of a service with n replicas is
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This table calculates the expected utility for each configuration in the example.  The first column indicates the state of the system.  A bar over the service label indicates the service is not operational at the end of the period.  For example, 

indicates that A is running but B has failed.  The second column is the value of the configuration.  Here the aggregation function is simple addition, so if both A and B are operational the value of the configuration is 2000.  The third and forth columns show the calculation of the expected utility of C1, EU(C1), which is the total shown on the last row of the table.  The fifth and sixth carry out the calculation for C2 as the seventh and eighth do for C3.  

In C1 everything is running fine.  Out of a possible value of 2000 the expected utility is 1998, almost perfect.  After the failures, the expected utility drops to 1899 because of the uncertainty that B will complete.  C3 reflects the administrative action of taking a replica from A and giving it to B.  This increases the expected utility to 1980, a dramatic improvement considering that no resources were added.

Example 2:  The next example calculates the binary Utility of Operation using the same probabilities and configurations. The difference is in the utility of each configuration.  Since both A and B are required services, each is given a value of 1.  The aggregation function is a logical AND, so only the configuration with both operational is given a value of 1; all others are 0.
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The utilities are calculated as before.  When calculating the expected Utility of Operation the result is no longer binary.  It ranges from 0 to 1 and is the probability that the configuration will maintain a minimal level of operation through the period.  In C1 everything is running properly and the expected Utility of Operation is 0.998, nearly perfect.  After the failures, the expected utility drops to .8991, again largely due to the risk that B will not complete.  Again, the C3 reflects the administrative action of shutting down an A replica and giving it to B which significantly improves expected utility. 

Example 3:  So far, the two service utility metrics produce the same desired configurations.  However, if multiple levels of QoS are introduced, it becomes apparent that the two metrics differ substantially.  This next example introduces QoS.  The service A now has two levels of operation, high and low.  The high level offers a value of 2000 and requires 3 hosts to run.  The low level is required for a minimal level of operation and offers a value of 1000 but requires only 1 host to run.  If the high level of service cannot be maintained, it automatically drops to the low level of service.  In the example A starts out at the high level of QoS.  If A loses a host, it drops to the low level of QoS with one replica.  The probability that A completes the period at the high level is the probability that all three hosts complete.  The probability that A completes the period at the low level is the probability that any single host completes minus the probability that A completes at the high level.  There are now 6 possible outcomes.  B is still worth 1000, so if A completes at the high level along with B the value is 3000.
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In the initial configuration all hosts are operational and the expected Utility of Value is nearly optimal at 2739.  After the failures, the expected value drops by about 150 reflecting B's instability.  C3 evaluates the administrative action of removing a host from A to increase B's stability.  In this case, the action does not appear to be desirable and would not be taken.  The reason is that removing a host from A would cause it to drop from a high level of QoS to a low level of QoS at a cost of nearly 1000.  

Example 4:  The goal of the Utility of Value metric is to maximize perceived performance and maintaining A at a high level of QoS is consistent with this goal.  However, the survivability of the system is sacrificed by this choice as the next example using Utility of Operation shows.
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In the initial state all hosts are operational and A is operating at the high level.  After the failures, B is reduced to one replica and the expected Utility of Operation drops to .8991.  A is still operating at the high level, but this is not reflected in the binary operational metric.  Step 3 reflects the administrative action of taking a host from A.  This causes A to drop from the high level to the low level and increases the stability of B.  As a result the expected operational utility increases to .9801.

This example illustrates the difference between the integer Utility of Value and the binary Utility of Operation.  Utility of Value optimizes for performance and Utility of Operation optimizes for stability.  Which objective is preferable depends on the situation.  We would actually like to achieve both with some sort of hybrid measure. For example, if two configurations are within an epsilon of expected operational utility, then choose the configuration with the highest value.  The size of the epsilon would be controlled by an administrator and could vary over time.  For example in peace time, performance is preferable; however, before an engagement the value could be tightened down to reflect an increased need for stability.

5.
Conclusions

We have presented a simple computational system model over which survivability metrics can be computed, defined a series of metrics based on utility theory to measure the immediate and long-term desirability of system configurations, and presented two specific objective functions that value different system properties (work and resilience).  These were illustrated by examples.  We identified several extensions that should be investigated in the future to provide greater fidelity between the models and reality.
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