Survivability
in
Object Services Architectures

David L. Wells, David E. Langworthy, Thomas J. Bannon

Object Services and Consulting, Inc.

Dallas, TX

{wells, del, bannon}@objs.com

September 1997

This research is sponsored by the Defense Advanced Research Projects Agency and managed by Rome Laboratory under contract F30602-96-C-0330. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied of the Defense Advanced Research Projects Agency, Rome Laboratory, or the United States Government.

© Copyright 1997, 1998 Object Services and Consulting, Inc. Permission is granted to copy this document provided this copyright statement is retained in all copies. Disclaimer: OBJS does not warrant the accuracy or completeness of the information in this document.

Abstract

This report describes the goals, approach, and anticipated results of the project "Survivability in Object Services Architectures". It also introduces a collection of other reports produced on the project.

Table of Contents

3

1. Introduction

2. Project Goals
3

3. Expected Results
5

4. Technical Approach
5

4.1. Survivability Architecture
6

4.2. Models
7

4.3. OSA Hooks
7

5. Project Documents
8

Introduction

As mission critical software applications become larger and increasingly geographically distributed, the frequency of loss or degradation of parts of the system due to physical or information warfare attacks, hardware or infrastructure failures, or software errors increases dramatically. At the same time, the complexity of such systems and the need to rapidly adapt them to changing real-world requirements renders inadequate many of the traditional means of making software robust.

This report gives a technical overview of a DARPA funded, Rome Laboratory administered project entitled Survivability in Object Services Architectures being executed by Object Services and Consulting, Inc., that is developing software models and mechanisms to address this problem. As of September, 1997, the project is about one year old, with a bit over one more year to run.

The paper is organized as follows. Sections 2-3 summarize the project's goals and anticipated results. Section 4 summarizes our technical approach. Section 5 lists other documents containing additional technical detail.

1. Project Goals

This project has three related top-level goals:

· to make military and commercial software applications based on the popular Object Services Architecture (OSA) model far more able to survive failure and attack than is currently possible,

· to make the development and use of survivable OSA-based applications tractable and cost-effective, and

· to scale to collections of numerous, large, independently developed applications running in the same computing and networking environment.

The second and third goals complement the first. If the development of survivable applications is too difficult, they will never be built, rendering moot the power of the survivability mechanisms. The need to scale is obvious. The need to address independently developed applications competing for resources reflects the reality of a world in which dedicated resources and tightly coupled, closed systems are rapidly giving way to shared resources and loosely coupled systems, often constructed at least partially from commercial off-the-shelf (COTS) or pre-existing (GOTS) software.

We restrict our attention to OSAs because unlike more general ways to construct applications, the OSA model and implementation (collections of object services interacting locally or remotely over an object bus) are clean enough that extensions are tractable. At the same time, OSAs are very powerful and are used increasingly within DOD and commercially. The two best known examples of OSAs are the Object Management Group (OMG) Common Object Request Broker (CORBA) and Microsoft Active-X.

Our three goals are discussed further below.

Survivable OSA Applications and Services: Robust applications must be able to survive software, hardware, and network failures and degradation. For applications to survive, it must be possible to reconfigure them as resources fail. When possible, the reconfiguration should maintain complete functionality and performance, but if the resource loss becomes too severe it must be possible to gracefully degrade the application(s)' capabilities to make best use of the remaining resources. Reorganization must be situational since different real-world situations place different valuations on application functionality. This requires mediating between conflicting demands for resources as the resource pool diminishes. Naturally, the survivability mechanisms themselves must be stable and not introduce additional points of weakness.

Cost Effective Use and Development: To make the development of survivable OSA-based applications tractable and cost-effective, our solution must reuse or adapt key existing software infrastructure, keep development simple, and be widely applicable. The software infrastructure to be reused comes primarily from two main areas: the OSA domain itself (development tools, ORBs, object repositories, and object services), and the combined domains of fault tolerance, high availability services, failure/attack detectors, and system monitors. The straightforwardness of OSA application development is largely responsible for the popularity of the model and must be preserved by our solution; i.e., development should remain approximately the same as it is now and complex specifications or nonstandard development tools should not be required. To achieve this, we make survivability orthogonal to conventional OSA application semantics; in other words survivability is "added" to an application rather than built into it from the start
. To ensure that the solution is widely applicable, we plan to make our specifications and prototype survivability tools publicly available, and work through the Object Management Group (OMG) to place our specifications and prototypes into their standards process.

Scaling and Independence of Development: Individual applications or services should not be responsible for the details of ensuring their own survivability since this is generally hard to program, does not amortize the cost of developing the survivability mechanisms, may conflict with other applications' or services' needs, and requires a more accurate knowledge of the eventual deployment environment(s) than is reasonable to expect at development time. This argues for survivability being provided by a "Survivability Service" that handles the survivability needs of applications collectively, responding to changes in workload, resource requirements, resource availability, and threats based on a number of models that can be specified independently. The models can be at various levels of fidelity, with higher fidelity resulting in better ability to survive. If an application's or service's requirements are not specified, the application/service will be unaffected by the existence of the Survivability Service, satisfying the goal of minimal impact. This approach supports the goal of development simplicity. A consequence of making survivability orthogonal to application functionality is that changing the models (not the applications or services) allows applications to be deployed into dynamically changing or unanticipated environments.

2. Expected Results

Results of several kinds are expected from this project. In an effort of this size, a complete solution to such a complex problem, supported by robust software, is not possible. We have chosen to concentrate on providing the following types of results:

· Models. The key to constructing survivable systems is to configure them in such a way that they can be easily reconfigured when needed to survive loss of system resources. We are extending and clarifying the standard OSA model to define "survivable configurations" as ones that are able to withstand component loss and are also capable of being systematically evolved into new configurations should component loss become severe. The models specify how to change both the physical configuration (different service placement or resource allocation) and the logical configuration (service alternatives or changed levels of service quality).

· Architecture Specification. We are developing a specification for the architecture of a Survivability Service that implements the models described above. The architecture is compatible with existing OSAs and projected trends and encompasses a wide variety of existing research in fault tolerant systems, failure detectors, system models, etc. We concentrated initially on providing an overall architecture for the Survivability Service that covers the "big picture" of how the components relate. This includes an internal partitioning that allows major subsystems to be replaced or refined, possibly by third parties. Of considerably less importance, at least in the early stages, will be detailed interface descriptions (both the Survivability Service's API and its internal interfaces) since changes to these will have limited scope and are likely to evolve as development progresses and other development projects are integrated. We also plan to convert the specification to standard Object Management Group (OMG) format and submit it to the OMG as a draft specification or input to a Request for Information (RFI).

· Prototype Software. We are prototyping the parts of the Survivability Service related to decision making, including a market mechanism for resource allocation, simple models and model evolution to drive survivability decisions under changing conditions, specifications of how to rebind logically equivalent or similar services, and some visualization. This will allow demonstration of a cohesive part of the Survivability Service that can later be attached to failure detectors and actual ORBs to carry out decisions made in the part of the system implemented. This strategy also matches well with our understanding of work done by other projects so that we can avoid too much development overlap.

3. Technical Approach

OSA survivability is not a tabula rasa; there is already substantial existing work in a number of areas that bear directly on the problem, but that work is largely disjunct and does not solve all of the problems. Our approach is to identify useful existing and proposed technology (largely from the research community, since little of this technology has penetrated the commercial world), determine how this can be applied to OSAs, and integrate it into a unified whole. The result is a layered architecture for a Survivability Service that provides increasingly sophisticated kinds of survival strategies using a market mechanisms to allocate resources based on a number of models. Survivability is added to applications and services by exploiting properties of OSAs that allow the Survivability Service to seize control when needed to reconfigure the system. The major aspects of the system are outlined below.

3.1. Survivability Architecture

Survivability requires a variety of actions that are organized in the Survivability Service into the following layers.

· Basic Process Control: The ability to start, stop and restart processes, to clean up after failed or aborted processes, and to restore processes to known states. Most of this is provided by ORBs.

· Fault Tolerant Services: These are services designed to (usually) fail in known “good” ways. Their failure modes become part of the service specification. This must be provided by the service developers.

· Failure Detection & Classification: These mechanisms detect the symptoms of failures and attacks, and classify the events into likely failure categories. This can be done through probes, wrappers, or exception reports from well-behaved services. Classifying observed symptoms into error categories is at least partially based on the failure mode specifications of the fault tolerant services. We are not working in this area, and will either obtain these mechanisms from elsewhere or assume an oracle for demonstration purposes.

· High Service Availability: These are a collection of mechanisms to make individual service instances much more highly available than they would otherwise be. Techniques are either based on replication or hierarchical masking (i.e., error handling in the client). We concentrate on using replication-based policies since they do not rely on the semantics of the services and are therefore more widely applicable. Many replication-based policies exist (e.g., voting, hot backup, error correction) and some are integrated with ORBs (e.g., Electra and Orbix+Isis). These mechanisms must be efficient since they are invoked during normal (non-error) operation. At this level, it becomes possible to physically reconfigure an application by changing the way individual services are implemented. The logical organization remains fixed in that clients still interact with the same services after any reconfiguration.

· Availability Management: This layer manages the use of the High Service Availability mechanisms. It determines the appropriate fault tolerance mechanism to use for a given service based on service failure modes and perceived threats, and determines the resource pool needed to achieve desired availability. It can be less efficient than the lower layers since its use is infrequent or can be a background activity.

· Service Renegotiation: At this level, it becomes possible to change the logical organization of an application by binding clients to alternate services if the desired service should become unavailable or degrades in performance. The rebinding can be to an equivalent, but distinct service (e.g., a different server having the same maps), or to a similar, but acceptable service (e.g., a different server with maps of the same area but at lower resolution). Alternatively, the same service connection can be maintained but at a lower quality of service (e.g., more errors or slower). This is semantically more sophisticated than lower layers and requires specifications of client-service connections beyond those currently used in OSAs. Use of threat, situation, and resource models is definitely recommended. In addition to allowing rebinding to service alternatives when services fail, service renegotiation can represent a fallback position if the costs of assuring service availability become unacceptably high.

3.2. Models

A variety of models are used by the Survivability Service. All models must be distributed. The models include:

· Resource Model: This captures physical resources, services, and code that implement the various services. It will definitely be partitioned.

· System Model: This defines the perceived current system configuration. It may be inaccurate, since it will be asynchronously updated and failures may not be detected until some time after they occur.

· Attack/Failure Model: This defines the types of possible attacks and failures, and the consequences (affected resources) of each.

· Threat Model: This augments the Attack/Failure Model by adding the anticipated likelihood of each kind of attack or failure. It is used when classifying errors and when determining how to reallocate resources (it does little good to rely on a resource believed to be under increased attack). The Threat Model may be influenced by the Situation Model.

· Situation Model: This defines the relative importance of tasks in the current real-world situation and modifies the Threat Model according to threats that are situation-based (e.g., physical attack is more likely when at war).

3.3. OSA Hooks

The various survivability techniques discussed above must be integrated into the OSA framework. This is straightforward, since one of the main characteristics of OSAs is the loose, well-defined boundary between clients and services. While not currently part of the OMG CORBA 2.0 specification, the ability to trap traffic across the ORB has been requested by the OMG Security Service and will probably be part of future CORBA specifications. This would allow binding to service replicas and rebinding to service alternatives in a straightforward fashion. Simple extensions (or protocols on top of) the way in which services are launched would support the choices of implementation type and location essential to place services intelligently.

4. Project Documents

The following reports have been (or are expected to be) produced under this project. Because we are at a midpoint in the project, even those reports that are currently in "final" form are expected to be revised next year as we refine the models and specifications, and as development of the Survivability Service progresses.

· Survivability in Object Services Architectures. [this report] This report describes the goals, approach, and anticipated results of the project "Survivability in Object Services Architectures". It also introduces a collection of other reports produced on the project.

· Composition Model for Object Services Architectures. [9/97, revision expected 10/98] This report describes extensions to the standard Object Services Architecture model to support composition of OSA-based applications from object services using external binding specifications. Isolating the decision about which particular service to bind to from the abstract specification of the characteristics of the service required allows binding decisions to be reasoned about in the context of global system knowledge generally unavailable to the developer of an individual application, either because the environment is too complex to be fully understood, because the environment is changing dynamically as the result of attacks or failures, or because the system is being deployed in an unanticipated environment. This gives the ability to tailor application configuration based on current resource utilization and perceived threats to the system resources. The result is the ability to configure more survivable OSA-based applications than would otherwise be possible. The OSA Composition Model is the basis for the Evolution Model for OSAs and supporting Evolution Tools for OSAs which migrate application configurations from one legitimate state to another.

· Evolution Model for Object Services Architectures. [9/97, revision expected 10/98] This report describes extensions to the Object Services Architecture model that make it possible to safely migrate a running application from one legitimate configuration into another legitimate configuration. Both semantically identical and semantically similar transformations are possible under this model, which allows applications to continue to survive in degraded mode when system resources become unavailable due to attack or failure. Legitimate transformations are determined based on the original application service binding specifications as described in the Composition Model for OSAs and mapping rules that define various possible transformations. From within the set of legal evolution possibilities, a number of system and threat models are used to determine a "good" transformation based on a malleable combination of predicted safety, best performance, and lowest cost.

· Evolution Support Toolset for Object Services Architectures. [to appear 11/97, revision expected 11/98] This report describes the architecture of an OSA Survivability Service that uses the OSA Composition Model to initially configure OSA-based applications and reconfigures them for survivability using the OSA Evolution Model. The Survivability Service uses a single set of system models and specifications for both purposes. The Survivability Service is compatible with existing work in failure detection and classification, fault tolerance, and highly available systems. Both the internal architecture of the Survivability Service and its connections to external services are described. Portions of the Survivability Service are being prototyped as part of this project.

· User Manual for the Evolution Toolset for Object Services Architectures. [to appear 11/98]. User and installation guide for the Evolution Toolset prototype. Lists limitations and known bugs.

· OMG Object Change Management Service Proposal. [to appear 10/98] A proposal to the Object management Group for a Change Management Service based on the work performed on this project. The report will be basically a rewrite of the other project documents into a form compatible with OMG standards for draft specifications.

� While this may sound unrealistic, examples of adding behavior to applications with few modifications exist, notably object-oriented databases which add persistence orthogonally to programming language structures.

- 1 -

