Evolution Model
for
Object Services Architectures

David L. Wells, David E. Langworthy, Thomas J. Bannon,
Nancy E. Wells, Venu Vasudevan

Object Services and Consulting, Inc.

Dallas, TX

{wells, del, bannon, nwells, venu}@objs.com

This research is sponsored by the Defense Advanced Research Projects Agency and managed by Rome Laboratory under contract F30602-96-C-0330. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied of the Defense Advanced Research Projects Agency, Rome Laboratory, or the United States Government.

© Copyright 1997, 1998 Object Services and Consulting, Inc. Permission is granted to copy this document provided this copyright statement is retained in all copies. Disclaimer: OBJS does not warrant the accuracy or completeness of the information in this document.

Abstract

This report describes extensions to the Object Services Architecture model that make it possible to safely migrate a running application from one legitimate configuration into another legitimate configuration. Both semantically identical and semantically similar transformations are possible under this model, which allows applications to continue to survive in degraded mode when system resources become unavailable due to attack or failure. Legitimate transformations are determined based on the original application service binding specifications as described in the Composition Model for OSAs and mapping rules that define various possible transformations. From within the set of legal evolution possibilities, a number of system and threat models are used to determine a "good" transformation based on a malleable combination of predicted safety, best performance, and lowest cost.

Table of Contents

3

1. Introduction

2. Overview of OSA Composition and Evolution
3

3. Evolution in the Survivability Object Abstraction
5

3.1. Time-Invariable Bindings
7

3.1.1. Implementation Object Instance Implementation Class
7

3.1.2. Implementation Object Instance Instantiation
8

3.1.3. Service Instance Type
8

3.2. Time-Variable Bindings
8

3.2.1. Implementation Classes Implementing an Interface Type
8

3.2.2. Host of an Implementation Object Instantiation
9

3.2.3. Implementation Object Instances in a Service Instance Instantiation
9

3.2.4. Coordinator of a Service Instance Instantiation
10

3.2.5. Service Instance Instantiation
11

3.2.6. Service Instance Bound to a Service Request
11

3.2.7. Service Instances Satisfying a Binding Request
12

3.2.8. Service Binding Requests by a Client
12

4. Reconfigurations in the Implementation OSA
13

4.1. CORBA
13

4.2. Active-X
13

4.3. Java
13

5. Model Evolution
13

5.1. Resource Model
13

5.1.1. Removing Resources
14

5.1.2. Adding Resources
14

5.2. Failure/Attack Model
15

5.3. Threat Model
15

5.4. Situation Model
17

Introduction

An OSA-based application consists of a collection of object services interacting across an object bus. Not all possible configurations of OSA-based applications are equally robust, nor are all configurations equally able to be reconfigured. A companion paper, Composition Model for Object Services Architectures defines a subset of the possible OSA configurations that is more survivable and that can be reconfigured into other configurations in the feasible set. This paper defines legitimate evolutions of an OSA-based application from one of these desirable configurations to another. While it hints at the properties of "good" evolutions, detailed discussion of that topic is deferred to a separate paper, Evolution Support Toolset for Object Services Architectures, that presents an OSA Survivability Service that implements the models and chooses between legitimate configurations and evolution alternatives.

The paper is organized as follows. Section 2 summarizes the relationship between the OSA Composition and Evolution Models, and between our survivability object abstraction and the object abstraction presented by an implementation ORB such as. CORBA. Section 3 presents the various forms of evolution possible in the survivability object abstraction. Section 4 defines how these abstract evolutions are realized as concrete operations at the implementation ORB level. Section 5 describes how the models used evolve to reflect changing circumstances.

1. Overview of OSA Composition and Evolution

The OSA Composition Model defines an object abstraction in which to create OSA-based applications that are robust and are survivable through various forms of evolution. Applications defined using the OSA Composition Model are reified using the object model of an Implementation ORB such as CORBA. Mappings from constructs in the OSA Composition Model to an Implementation ORB are defined by the OSA Composition Model.

For a given application specification, there are potentially many reifications of it at both the OSA Survivability level and the Implementation ORB level. Of course to execute the application, one of these must be the one to be instantiated. This is done by the OSA Survivability Service using the facilities of the Implementation ORB. Instantiation may take place incrementally as an application progresses, and an application may relinquish resources it no longer needs. Applications compete with each other for resources.

Sometimes, an instantiated application may be forced to involuntarily relinquish resources before it is ready to do so. This may be because the resources themselves fail, or because some other application's competing demands are judged to be more important. In this case, the application must either be terminated, giving up all its resources and no longer providing any service at all, or it must be evolved in some way to use resources that are still available. It may be that after evolution, the application still provides the same service, or it may provide a similar service with degraded functionality. If either can be done, the application is called survivable.

Necessary and sufficient conditions for an application to be evolved are that there be another instantiation of the application that uses currently available resources, and that there be a state-preserving transformation from the existing instantiation to the proposed instantiation. Determination of possible new instantiations is done using the OSA Composition Model in exactly the same way as for the original instantiation, only using a different set of available resources. However, the mere existence of a different possible instantiation does not guarantee that it is legitimate. This is because work already done by the application is encoded in changes to the abstract state of the various services comprising the instantiation. Simply moving to a new instantiation that would have been a legitimate initial instantiation loses that information and is thus not legitimate.

The object abstraction defined by the OSA Composition Model has been designed to provide a number of "joints" where applications can be disassembled and reconfigured. The OSA Evolution Model uses these joints as places to apply a number of transformations. For each transformation, the OSA Evolution Model defines preconditions that must be met in order for the transformation to be applicable. These transformations not only construct a new instantiation of the application (usually an incremental change from the previous instantiation), but define actions necessary to make the abstract state of the various services compatible. These actions are performed at the level of the Implementation ORB in response to decisions made by the Survivability Service.

Just as the OSA Composition Model does not prescribe which of the legitimate configurations is "best" for some purpose, the OSA Evolution Model does not prescribe which evolution is "best" at some given time. The models have been designed to make the choice of a "good" configuration or evolution tractable, but this choice is properly outside the models
, since different circumstances and objectives will yield different answers.

Each form of evolution has advantages and disadvantages. A given problem is potentially solved by many different kinds of evolution, and for a given type of evolution, there will typically be a set of legitimate possible outcomes. Determination of which alternative to use is the responsibility of the Survivability Service. In general, any form of evolution may be used by the Survivability Service to address any problem. In other words, there is no exact match between some kind of resource loss or objective change and a particular evolution action.

The following figure illustrates the relationship between the OSA Composition and Evolution Models and between the survivable and implementation object abstractions. The bold parts of the figure are those addressed by the OSA Evolution Model.

2. Evolution in the Survivability Object Abstraction

The OSA Composition Model defines an object abstraction with a number of places where evolution can take place. The figure below shows the object abstraction. Each time varying relationship (shown in the figure by a dashed line) is a place where a survivability transformation may take place. This section describes each of these "joints", the kinds of transformations can take place each, and the preconditions that must be met before a particular transformation can take place.

A time-variable relationship can be changed after it has been made, whereas a time-invariable relationship cannot. In principle, any relationship could be time-variable, but this is often impractical, so some relationships end up being time-invariable. There are two reasons why a relationship might be made time-invariable: a need for efficiency in resolving the mapping defined by the relationship, and a need to ensure that state dependencies caused by a particular mapping are not violated if the mapping changes. If a mapping is time-invariable, it can effectively be cached and the perhaps complex process of determining the initial binding can be avoided. As an example, consider the difference in cost between a C++ and a CLOS method invocation. The need to preserve state dependencies is a bit more complex. When objects interact, they often affect each other's abstract state. This potentially mutual change of state is an encoding of the messages sent using a particular mapping for the relationship. If this mapping is changed, the states of all objects involved need to be reconciled. This includes objects in the original mapping and those in the new mapping. Doing this reconciliation is non-trivial, and may be impossible. Often, the places where this abstract state is concretely represented is known only to the object implementations, and cannot be reconciled from the outside. In any event, this reconciliation may be expensive and is not to be done lightly. By forcing a relationship to be time-invariable, the need to be able to perform this kind of reconciliation is eliminated.

The above discussion leads to two criteria that must be applied to changing time-variable mappings: it must be relatively efficient to determine the current state of the mapping and whether it has been changed, and there must be a way to reconcile mutual state for each of the kinds of binding changes that may occur. Note that the latter does not require the ability to do arbitrary reconciliation, since that is in general impossible. We sidestep this by only allowing transformations where we know how to reconcile state.

We now examine the time-invariable and time-variable bindings in turn. Time-invariable bindings are presented, even though they do not form part of the OSA Evolution Model, in order to justify why they are not also time-variable.

2.1. Time-Invariable Bindings

The time-invariable bindings are:

· Implementation Object Instance Implementation Class

· Implementation Object Instance Instantiation

· Service Instance Type

2.1.1. Implementation Object Instance Implementation Class

Implementation ORBs all require that an object instance (in this case an implementation object instance) always be of the implementation class under which it was instantiated. This simplifies code management at that level and presumably makes loading and initialization more efficient. Because this is buried deeply inside all Implementation ORBs, we see no justification for attempting to change it. We achieve the important ability to vary implementation class in other ways.

2.1.2. Implementation Object Instance Instantiation

The concept of an implementation object instance instantiation is a bit slippery because it is not precisely defined at the level of the Implementation ORB. We take this to mean that the mechanism by which an instantiation is launched is fixed. In CORBA at least, this is embedded in a script registered with the Implementation Repository augmented by information automatically provided when an object instance is created. This process is too closed for us to want to try to modify it.

2.1.3. Service Instance Type

In principle, it would be desirable if a service instance could evolve its type or if a type itself could evolve. We have not addressed this issue, because of the difficulty of the problem and because the main thrust of survivability is the response to immediate problems engendered by loss of resources, and not on solutions that require programming effort.

2.2. Time-Variable Bindings

The time-variable bindings are:.

· Implementation Classes Implementing an Interface Type

· Host of an Implementation Object Instantiation

· Implementation Object Instances in a Service Instance Instantiation

· Coordinator of a Service Instance Instantiation

· Service Instance Instantiation

· Service Instance Bound to a Service Request

· Service Instances Satisfying a Binding Request

· Service Binding Requests by a Client

Transformations are presented from the "bottom up" in the model; i.e., transformations at lower levels are presented first. We do this is because lower level transformations are the most straightforward, generally cheapest to make, have the least impact on the application, and are therefore most frequently used.

All of these transformations allow the Survivability Service to do one of two basic things: to vary the way in which a service instance is instantiated, and to change the service instance to which a client is bound. They should be considered in light of those two higher level objectives.

2.2.1. Implementation Classes Implementing an Interface Type

New implementation classes can be added at will by simply registering them with the Resource Model and storing them appropriately. They can then be used when constructing new implementation objects. No reconciliation of state is required.

Implementation classes may be removed. This is likely to be done if either their code is lost or if the Survivability Service decides that it no longer trusts a particular implementation class. In the event that an implementation class is no longer available, none of the implementation object instances using that class can be instantiated. This may affect the ability to instantiate a service instance, depending on whether or not there are other implementation objects that can be used to instantiate it, and whether its state is stored somewhere else.

2.2.2. Host of an Implementation Object Instantiation

One way to vary a service instantiation is to change where its implementation object instances get instantiated. This does not change which implementation object instances are used, just where they are instantiated. This is an important distinction, because implementation objects are presumed to know how to create (or restore from persistent storage) their own concrete state, whereas if new implementation object instances were used, it would be the responsibility of the Survivability Service to initialize them property.

No reconciliation should be necessary if the location of the instantiation changes, although the implementation object may need to be more careful when restoring its state, since it cannot use default locations to find its state since it does not know where it will be instantiated.

Java certainly supports object portability. We believe that we can get a hook to allow the object to be instantiated on variable machines in CORBA, but have not yet tried it, so we don't know for certain.

2.2.3. Implementation Object Instances in a Service Instance Instantiation

In addition to changing where implementation objects are instantiated, it is possible to change the actual set of implementation objects used in a service instantiation. Two kinds of changes can be made: the number of implementation instances may be increased or decreased, or different (possibly newly created) implementation objects of different implementation classes can be used. Both kinds of transformations allow tailoring the service instantiation's performance and reliability. Having the implementation objects of different implementation classes increases robustness. Geographic distribution may increase or decrease reliability and performance depending on the coordination policy and the message traffic.

No reconciliation of client state is required, because this transformation is entirely transparent to the client. The service instance coordinator must be informed of the change in the implementation object instance set.

When an instance is added, the coordinator must bring the new implementation instance(s) up to a state consistent with the pre-existing implementation objects. There are two ways that this is usually done by coordinators, one (at least) of which must be supported: state transfer, and message replay
. State transfer is possible if at least one of the implementation instances that is up to date can externalize its state into a form that can be internalized by the new instance. This requires both a common external form and a pair of externalization/internalization functions in the implementation classes beyond what is required to implement the interface type. This approach is not universally applicable; in particular, if the concrete states of the two classes are very different, it might not be possible to define a mapping. An alternative is for the coordinator to initialize the new instance to some known state and replay to it the message traffic that has been sent to existing instances, thus allowing the new implementation instance to "catch up". This is only feasible if the message log is maintained far enough back that it meets the state to which the new instance can be initialized. Often this technique is augmented by checkpointing state occasionally. If both techniques are implemented, the coordinator can choose. Considerations in making this choice are the size of internal state and the length of message log that must be kept.

If an implementation object instance is to be removed, there must remain a sufficient set of implementation objects to meet the requirements of the service instance instantiation. This means sufficient abstract state to be functionally complete, and enough implementation objects instances to satisfy the coordination policy and provide sufficient QoS. While not an absolute requirement, it is preferable that the remaining set of instances support the addition of new instances at some future point. In particular, if an instance must be removed, it should not be the only one that knows how to externalize its state.

2.2.4. Coordinator of a Service Instance Instantiation

The coordinator of a service instance instantiation can be changed. There are several reasons why this may be necessary:

· the number of implementation objects may change sufficiently that either a new policy is needed (e.g., voting is no longer possible) or the existing policy becomes unacceptably inefficient,

· message traffic changes enough that a different coordination policy becomes more efficient (e.g., the ratio of reads to writes changes), or

· the threat situation changes enough that the existing coordination policy does not mask the threats (e.g., network partitions become so likely that certain kinds of voting are never able to achieve a quorum)

No reconciliation with the client is required, since this transformation is transparent to the client. A safe (and probably the only) way to ensure consistency among the implementation instances during this transition is to temporarily block messages from the client until all internal messages to the implementation objects have been acknowledged and the implementation objects reach a mutually consistent state. This blockage may be unacceptable to the client, depending on its QoS requirements; if so, coordinator change is not possible at that time.

2.2.5. Service Instance Instantiation

Service instances need not be instantiated unless currently bound
. When reinstantiated, the new instantiation may be treated as either the same as the previous one (same OID at some level) or unrelated. The binding embedded into the client will reflect the current OID.

Since this is a new binding to a client, no reconciliation anywhere is required.

2.2.6. Service Instance Bound to a Service Request

A given service binding request may be satisfied by many service instances (see also section 3.2.7). Only one of these can be bound at any given time, but this binding can be changed under certain circumstances. In order to change such a binding, the client and new service instance must be synchronized to a mutually consistent state. In addition, the old service instance must be reconciled to the fact that it is no longer bound to the client. These present two different problems.

Reconciling the client and the new service instance means that the client must be able to handle responses from the new service instance. This does not necessarily mean that the client cannot tell the difference, although that is a desirable outcome. There are three cases, one of which must hold for a service instance to be rebound:

· the new service instance can be brought to a state compatible with the state of the old service instance,

· the client does not maintain state of the previous message traffic with the service, or

· the client can compensate for differences in mutual state.

We now consider generally applicable methods for achieving these conditions. Custom solutions are also possible, but are beyond our consideration.

There are three ways in which a new service instance state can be made consistent with the old service instance state:

· A stateless service achieves this condition vacuously.

· Message traffic to the old service instance can be maintained by the Survivability Service and replayed to the new service instance if some common staring point can be determined. Static initialization or initialization from a common persistent state would suffice. The message traffic must include messages from all clients, since this is a way for interaction to occur. Care must be taken to avoid illegitimate transfer of information when doing this playback, so some security concerns hold.

· State can be transferred from the old service to the new service. It is not clear what the advantage would be of this, since it implies that the original service instance was still functioning. State transfer to a different implementation object instance (see 3.2.3) would accomplish the same without requiring service rebinding. This is, however, an option.

Stateless clients are quite possible for such things as signal processing or video display. Care must be taken to ensure that clients of that client do not receive the state.

Client compensation is necessarily client-specific.

Declarations of these conditions must be made part of the service specification (for both the client and service) in order for rebindings to be made and the appropriate technique to be applied.

Reconciling the old service to the loss of its client involves freeing resources and possibly reverting the service instance to a consistent state (it may have been left in an inconsistent state by client interactions that never completed). Reclamation of resources occurs naturally in some ORBs when an implementation object is not used for some length of time. In the event that the ORB does not perform this automatically or the resources in question are not allowed to be automatically released, the Survivability Service can manually request their release by the ORB.

Restoration of consistent state appears to be much like database transactions. From this, it would appear that the ability to wrap a stream of client messages in a transactional framework, with the Survivability Service having the ability to issue an "abort" if the binding is broken would be very useful. We have not considered the details.

2.2.7. Service Instances Satisfying a Binding Request

The set of service instances that advertise that they can satisfy a binding request varies continuously. This set need be computed only when a change in the service binding is contemplated. No reconciliation is required, since this just represents a set of possible choices from which to bind.

2.2.8. Service Binding Requests by a Client

For any given service needed by a client, the client may issue alternative service binding requests. These are independent binding requests for services that are perceptibly different to the client. Typically such requests are for the same kind of service at diminishing (or at least different) levels of QoS. A client will generally have preferences among these requests, accepting less desirable bindings only if this is all that is possible. As such, these binding request alternatives differ from a single service binding request that identifies many service instances; the latter identifies service instances that appear the same to the client, while the former identifies service instances that appear different to the client.

Such a change cannot be hidden from the client, and it is therefore the client's responsibility to compensate for the change. This will necessarily be client-specific, and poses the same set of issues as rebinding a service within a single service binding request (section 3.2.6). As in that transformation, it may be possible to synchronize client and service or it may be impossible. However, in all cases, the client must be able to handle the reduced QoS. This may be simple, as in a display routine, or may be more complex.

3. Reconfigurations in the Implementation OSA

Evolutions made within the survivability abstraction must be implemented by actions within and supported by the underlying Implementation ORB. In the Implementation ORB, far fewer facilities exist for evolution than at the higher level. This has two consequences. First, a single operation in the survivability abstraction will typically be implemented by several actions in the implementation ORB. Second, there will be no obvious relationship between the "before" and "after" configurations as seen from the implementation ORB's perspective; all such information is embodied in the survivability abstraction.

This section defines the actions that are taken in the implementation ORB to implement the various evolutions described in the previous section. There are three principal implementation ORBs, CORBA, Active-X, and Java. These are discussed separately.

So far, we have done an approximate mapping only to CORBA. Active-X is similar enough that the mapping should be similar. Java has different strengths and weaknesses, but we are convinced that a mapping to Java will also be possible.

3.1. CORBA

Details of this mapping will be provided in a subsequent report.

3.2. Active-X

TBD

3.3. Java

TBD

4. Model Evolution

In addition to evolution of an application, the models maintained in support of composition and evolution may also be evolved to reflect differing goals or understandings of system state. The kinds of evolution of these models that are likely are described here in brief. All changes to the models are made by (or through) the Survivability Service.

4.1. Resource Model

Changes in the resource pool are reflected in the Resource Model. Changes to the resource pool may force a reconfiguration or may change the reconfiguration choices available to the Survivability Service. In general, resources may be added or removed, but the focus of survivability is generally on compensating for diminished resources.

4.1.1. Removing Resources

Resources may be removed from the resource pool because:

· they fail to perform properly, either by failing to respond, producing incorrect results, or by providing a lowered QoS, or

· they are deemed untrustworthy because attacks on, or failures of, similar resources lead to a belief that these resources are likely to fail or succumb to compromise in the future.

Resources that are reassigned away from an application or service because they are needed elsewhere, or that become inaccessible without themselves failing are not lost. Such changes are not reflected in changes to the Resource Model.

Failure of individual resources is detected by the Survivability Service's Failure Detectors and Classifiers. This may involve a considerable time lag and is not always accurate. For example, a resource may be assumed to be lost when it is only temporarily unreachable due to a misclassification. Because of these potential inaccuracies, there must be feedback loops within the Survivability Service to ensure that a planned action (based on the model) is actually able to be carried out. Resource loss can also be manually reported.

Resources can also be removed from use because they are suspected of being unreliable, even though they have not yet failed. This, of course, will not be a decision made by the Failure Detectors and Classifiers, since the resource in question has not actually failed. Instead, the Survivability Service examines the revised Threat Model, and decides whether it should remove a particular resource based on the estimated likelihood that it will fail or succumb to attack in the future. The kinds of resources that are likely to be removed in this way are those that have some common property. An example would be all implementation objects based on a (believed to be) compromised implementation class, or all instantiations on a particular machine. Resources may be speculatively removed from consideration when their use might cause damage in some way, for example by compromising data, causing a service using them to fail at some critical moment, or because they are so unreliable that the cost of using them exceeds the benefit gained.

Speculatively removed resources can be absolutely removed or can be marked in some way so that they are used only as a last resort. In the current implementation of the Survivability Service, it makes most sense to absolutely remove dangerous resources and to place a low value on the use of unstable resources and allow the Market to denigrate their use except in dire circumstances.

4.1.2. Adding Resources

Resources may be added at any time as well, although the general assumption for survivability is that this will be infrequent and will be limited to only certain kinds of resources. As such, the OSA Evolution Model does not provide support for activities such as software development that are unlikely to occur when a system is under attack. However, the fruits of such development can be used, as long as they appear as a ready resource of a type already familiar to the Survivability Service.

Any physical resource can be added at any time. A very common occurrence is that a previously failed resource will become available again; e.g., a host fails and reboots, or communication with a mobile host is restored.

Implementation objects are routinely instantiated when they are touched. New implementation object instances can be created at any time by the Survivability Service.

Implementation classes, interface types, and coordinators are much less likely to be added, since they cannot be created automatically by the Survivability Service and generally require programming effort to create. Similarly, service instances are infrequently created, since this requires knowledge of why they are being created and what their initial abstract state should be, which is again a human activity normally outside the scope of survivability.

4.2. Failure/Attack Model

The Failure/Attack Model is changed very infrequently and only by human intervention to redefine failures or attacks or to define new ones.

4.3. Threat Model

The purpose of the Threat Model is predictive: to avoid configurations that are likely to become bad, and to aid in failure diagnosis. The Threat Model changes when one of two things happens:

· a new failure or attack is determined to exist, or

· the perceived likelihood of an existing threat changes.

The entry of new threats is discussed in Composition Model for Object Services Architectures and is not discussed further here.

The perceived likelihood of threats can change because either:

· the real-world situation changes, making particular threats more or less likely, or

· analysis of past attacks/failures indicate that the threat model was incorrect.

Changes to the Threat Model based on changes in the real world are embodied in the definition of the Situation Model. It is not clear whether the Situation Model should define threat likelihood explicitly for given situations, or provide a more abstract definition that is used to bias the computation of threat likelihoods.

Modifications to the Threat Model based on analysis of attacks/failures are more complex. They start with the detection of symptoms of problems detected by Failure Detectors. These symptoms are events that can be directly observed by a detector, such as a service that has not responded within a certain amount of time, an error rate that has reached some threshold, etc. From this, the Failure Classifier attempts to determine which resource(s) have failed and in what mode
. At this point, a failed resource is identified, but in general, the cause of the failure is not known. Misclassification of failure mode or even of which resource failed are possible, and may be common. Classifiers may choose a broader failure mode than is actually the case (e.g., report node failure when the problem is actually the failure of some service at the node), or report an error in a resource when the actual error is upstream (e.g., report a host failed when the problem is in the network).

At this point, it is known (with potential for error) which resource is no longer adding value; this may cause the resource to be replaced. This is the point where the Resource Model is modified, but as yet, no changes occur to the Threat Model.

The underlying cause of resource failures are what we term attacks/failures
. The next step is to attempt to determine which attack/failure caused the resource to fail. This is generally a time consuming, off-line process that requires human involvement; e.g., through something like CERT. It may be very straightforward, however, such as a report of a bombing or the cutting of a wire with a backhoe
. Most difficult to determine are attacks/failures that can affect multiple resources, since the correlation of failures of individual resources into the underlying patterns is difficult and usually requires rather lengthy event logs, which of course also contain totally unrelated events.

Regardless of how the determination of an attack/failure is made, the next step is to decide if this should cause a change in the Threat Model. The Threat Model predicts how frequent a failure type should be. It is only when observed failures deviate from this by a significant amount that the Threat Model should change. We cannot be too precise about what this means at present because we are not sure how to describe threat likelihoods for various kinds of threats. For more discussion of this, see Composition Model for Object Services Architectures, section 4.2.2. As an example, likelihood of hardware failures is probably couched in terms of a mean time between failures provided by the manufacturer, while likelihood of a virus attack is a more subjective value. Modifications to MTBF may be made because of a hostile physical environment and can be based on direct observation or an informed estimate based on similar hardware in similar environments. Modifications to the likelihood of a virus attack are much more complicated. The initial estimate is probably based on such factors as software development rigor, sources from which downloads are accepted, and virus screening performed, without any knowledge of whether a virus attack on the particular software actually exists. Once a virus attack against the particular software has been detected, the likelihood estimate changes radically, since an attack can be made whenever desired by the possessor of the virus, assuming it is not screened out by download restrictions or virus screening.

One possible way of modifying the Threat Model is to increase the likelihood estimate by a small amount every time an attack/ failure is detected and reduce it periodically if nothing occurs. We don't know if an adaptive approach like this is reasonable, but it appears worth investigating if no better method is found.

4.4. Situation Model

The Situation Model is changed very infrequently and only by human intervention to redefine situations or to define new ones.

� It is made by the Survivability Service, described separately.

� State transfer is applicable only if the intent is to make the abstract state of the new instance match that of an existing instance. This would be the case for replication-based high availability services, but would not be for other coordination patterns such as data partitioning.

� This allows reclamation of resources not actively required. On the other hand, a service instance may be instantiated all the time. This will typically be the case if initialization is time consuming, they are frequently bound for short periods, or their potential clients need very fast response.

� See Composition Model for OSAs, section 4.2.1 for a discussion of failure modes. Basically, it is the type of failure from a predefined set.

� We need a better terminology here, since the word "failure" is used for both the failure of a resource and its underlying cause.

� In principle, it would be desirable to be able to infer causes of failures by correlating resource failures with the set of attack/failures that could have caused them to determine patterns. This is outside of our scope, and in any event is likely to yield only suggestions to a human analyst.

17

_936532847.vsd

_936608094.vsd

