Notes on Command Post Scenario

David Wells

Object Services and Consulting, Inc.

1. Preface & Caveats

Survivability preserves and gracefully degrades the functionality of software applications. To do this, the system is reconfigured as components fail and situations change. Naturally, not all reconfigurations are legitimate and of those not all improve survivability. To allow us to focus on the kinds events that must be survived and the survival actions that can be taken, we consider survivability in the context of a (admittedly stylized) DoD command post. This context has the advantage that it is relevant and understandable by DoD and the DARPA research community, exposes us to a cross section of real operational concerns, and is potentially insertable without too much effort into larger DoD efforts.

This paper is an amalgam of a number of DoD and contractor documents related to how software and data is (and will be) organized and to command post activities. This report should be read as working notes only.

There is a lot of interpretation on my part, since I have not been able to find a single, comprehensive description of this anywhere. The material was difficult to sort out, and I'm by no means certain that I am right. Part of the problem I think is that there are architectures at several different conceptual levels (DoD-wide or some smaller unit like a JTF), at several different distances into the future (the ultimate goal of fully portable everything and various transition paths from current practice), and differing ties to operational considerations (care or not care about autonomy of command when allocating resources to tasks). Since our objective is to provide survivability mechanisms, I've tried to sort this out into something that is far enough out to be technically interesting, but tied enough to current reality that it is plausible for use in DoD in the next 5-10 years. For instance, since I don't believe that operationally DoD will ever resemble arbitrary meta computing with totally fungible resources allocated without regard to a command structure, I've concentrated on the clustering and ownership of resources that I believe will exist into the foreseeable future. The discussion also brings in information I've picked up at various briefings and through reading general military history, which tends to have a lot of side information about how the military is organized.

The paper is organized as follows. Section 2 summarizes the salient points of how DoD wants to have its general computing environment organized in the future. Section 3 discusses what these general software characteristics mean in the context of a command post. Section 4 provides an example of an activity that takes place in a command post (air campaign planning) and how (at a coarse level) it uses the computing resources and how the various parts of the activity interact. These will eventually (in another document) be used to: a) determine survivability requirements and strategies, and b) define a survivability scenario for the command post.

2. Observations on Characteristics of DoD SW & Operations

DoD wants as much portability and fungibility of resources as possible, given operational considerations. They are obviously sick of stovepipes and incompatible solutions. However, I don't think that means they will ever get to either homogeneity or total fungibility. They will always have a big range of machine capabilities because they need data servers, number crunchers, embedded, and portable devices. Further, they need to upgrade and since there is so much HW and SW out there, they can't possibly change it all at once. Also, heterogeneity is good because it helps eliminate catastrophic design or implementation flaws from killing everything. Bottom line for us is that there will be a lot of flexibility of placement and service type, but not unrestricted in either dimension.

DISA TAFIM & TRM talk about a hierarchy of services. They are trying to standardize the base things everyone uses, like OS, main data formats, small number of implementations of a given functionality (and then only to get robustness). I think we can assume that this happens eventually, since it is a big cost savings and improves interoperability in a pretty easy way. At each level down (they talk about 3-4 levels), new services can be added and ones from higher levels can be customized. These then become standard services for that piece of the hierarchy. If sibling areas both customize, they appear to interoperate by the conventions of the parent service; possibly the functionality gets pushed up to the parent level. Note that unlike other organizations, DoD is in the position of being able to enforce its internal standards if it wishes. The further down the hierarchy you get, the less scope there is for customization, but the larger number of customizations there are, since each affects smaller groups (ultimately only one user).

There is a commitment to the Model-View-Controller interface model. There will be a set of standard ways to display data sets on different kinds of devices. This set will be extensible.

There is a distinction between "common", "shared", and "replicated" services and interfaces. "Common" refers to code, interface, or data format commonality; maps will be in a common format and everyone will all use the same spreadsheet. We'd think of this as being common IDL types. A "shared" service means that the instance is being used from multiple places; a big database in Washington would be shared. A shared service is shared either to ensure consistency for its users or because it requires resources or environment that cannot be replicated. A "replicated" service would be physically replicated code and data. The replicas might be synchronized, but for operational reasons they may be allowed to drift apart by some amount. Examples would be databases of plans or maps, where the cost of synchrony would make them unusable and some discrepancies can be tolerated. The kinds of discrepancies allowed are situational; some differences matter more than others and it is not just volume or time that matters. For example, not knowing exactly how much ammunition you have is OK, but not knowing the current theater boundary is not.

Commanders have missions and have sufficient authority and resources to achieve them (hopefully). A unit may be given different missions, but there is a chunkiness to units that precludes them being taken apart to have portions of themselves reassigned. At a human level, this is for training and morale reasons. Computers are seen as a piece of equipment like an artillery piece and neither will be taken away from their owner.

At each level in a command structure, there are discretionary resources that may be allocated by the commander to any mission of the sub-units. These may be reassigned at will by the commander. Examples are brigade level artillery, which may be used to support any sub-unit of the brigade. This may be used to support an adjacent brigade, but only at the discretion of the commander owning the artillery. It will not be reassigned by someone else. The commander at the next higher level can use some of his discretionary resources or reassign a sub-unit. The higher up the chain you go, the greater the amount of resources and the bigger they tend to be. For example, you might find field artillery at one level and tactical air support somewhere higher up. I would assume this model would hold for computing resources also.

The TAFIM and TRM try to categorize services and support functions. This may lead to some rather arbitrary partitionings, but some categorization seems necessary just so they can comprehend a problem of this size. Efficiency is definitely to be sacrificed in order to get understandability and well delineated functionality so they can determine who is responsible for what. Even if this means that some actions get done redundantly.

Databases in particular follow a model of a big, remote database where ground truth (perceived) is held, with local caches made from it as views. This seems to be pervasive. This is the model we saw back at TI on the FRESH naval operations planner that was eventually deployed in Hawaii. Sometimes the cache is refreshed on a schedule (e.g., once a day) and sometimes it is refreshed on-demand. It is important to realize that no one expects cache consistency to be maintained like you get in a memory cache; it is not needed operationally and is impossible to achieve. They are comfortable working off stale information as long as they know how stale it is and how fast the relevant parts can physically change. The refresh rate is tied to this. The naval planner was refreshed daily, because ships don't move that fast. For urgent information there were side channels for messages.

Peers need to exchange some information across boundaries. The military works on regions of responsibility (probably the wrong term, in physical partitioning these are called "theaters" at least at the large scale) and units are expected to keep out of each other's way by staying on their side of the boundary. That way you don't shoot your friend. Limited information has to cross these boundaries; only changes in the boundary conditions or local state that may cause the boundary to get changed in the future. No one needs to know all details of what their peers are doing, only how it is likely to affect them. These boundaries can be exploited.

The DISA SHADE (Shared Data Environment) is an "infosphere". The idea is standard data formats, databases, schemas, meta data, etc., so that commonly used data is managed at a higher level than the producers and consumers. One interesting thing is that they are defining standardized "data segments", which are partitioned data sets for particular uses, along with all the DBMS, scripts, data, schema, and so on so they can be installed wherever they are needed quickly. They already have a few it appears.

SHADE differentiates between "unique" (local and not shared with no particular format or portability requirements), "shared" (used by two or more groups and must have a common schema), and "universal" (used by many groups and managed outside all of them) data sets. SHADE also makes a distinction between databases used operationally and kept up to date but supporting only simple transactions, and warehouses that are culled from operational DBs periodically and against which complex planning operations take place. The warehouse may store raw data or abstracts. SHADE assumes legacy DBs and pairwise communication of data in proprietary format for the foreseeable future. SHADE distinguishes between "distributed DBs" that are kept synchronized, "replicated DBs" that may have temporal differences even though there is a master through which updates are made, and "integrated data servers" that are shared by several applications. I'm not sure what the point of the last one is.

3. Translating the Observations to a Mobile CP

Here's what I think a mobile CP will look like, given the above. We need not simulate all of this, but right now I want context.

3.1. Relationship to Other Units

A mobile CP will need to communicate with its subordinates, with its US or NATO country base (where at least a portion of itself remains), and with peers. SHADE universal data sources will reside outside the CP at its base. SHADE unique data sets will reside in the CP. SHADE shared data sets will either reside in a peer or be shared within the CP.

3.2. Communications

Within a CP, communications is by LAN. There may be multiple LANs with bridges. A LAN may be duplicated for reliability.

There is broadband communication to/from the base, but this may be interrupted or assigned elsewhere. Think of a wide WAN.

There is a very wide channel from bases to CPs via satellite that is used for broadcast messages. These are scheduled to correspond to data servers (DS) refresh cycles. This communications path is non-interruptible unless the CP's receiver is down. BADD is the model for this.

Communications to subordinate units is by a WAN by radio or local phone lines. It is lower bandwidth and potentially unreliable.

Communications to peers are by WAN, but are more reliable than to subordinate units because they are not moving and are sited to make communications more reliable.

3.3. Data Management

Operational data is either fed directly from sensors to applications or is stored in a DB local to its consumers. If stored in a DB, it may be accessed by many clients.

Right now, messages from the outside appear to go directly to their clients. There is a move to insert a message DB that stores all messages arriving at the CP. Messages would then be validated and cleaned up by an application before going into the DB. Views of the DB would be used to route messages to the correct consumers, or consumers could query the message DB. In this picture, messages are treated like any other data item, not as some fundamentally different thing like they are now.

Access to externally maintained DBs is through Data Servers (JTF lingo) that convert queries, produce views (possibly by combining and filtering several DBs), and possibly cache. If there is caching, there may or may not be a requirement that the cache and the source DB remain consistent. Whether they are required to be consistent (and how consistent) depends on the needs of the clients and will be specified.

Updates to external DBs appear to go through the Data Server as well, although I'm not sure. At least in the naval planner (FRESH) TI did, the equivalent to a Data Server was read only and the application could never update; it could make recommendations for actions that would affect the DB, but the DB only changed when some external input said the situation had changed. For instance, the planner would read the DS to find out a situation and make some recommendation to move some ships to respond; the DS would be maintaining a cache of some snapshot of the operations DB. This recommendation would go to the operations people (not back to the DS or DB). Operations would decide whether to follow the recommendation. If they did, they would issue an order, which would be executed, which would cause the state of the world to change, which would get reflected in the DB, which eventually would be reflected in the DS.

A DS maintains a cache if the data is bulky, frequently used, or the link is likely to go down. Cache updates can be periodic if either the DB changes regularly (e.g., a target DB where potential targets are identified daily by some upstream planner that works on a daily cycle), the clients run periodically (e.g., more detailed targeting decisions done daily), or the data is assumed to change slowly enough that reasonable decisions can be made with data no more than some age. Cache updates can be forced from the DB if deemed significant (e.g., a bridge destroyed). Cache can be refreshed by a DS query in response to a client request if the client determines it needs current data for some purpose.

There can be multiple DSs fronting the same DB. These would typically be in different CPs, or at least for different functions within the same CP. If there are multiple DSs, their caches may or may not be kept consistent with each other; the issues are approximately the same as for consistency between the DB and a single DS cache.

In the event that a cache update is not received, a client of the DS could hook to the corresponding DS in a peer CP. This would be at slower speed and possibly somewhat different data quality, since the DSs need not have the same view and the peer may have less detailed information. An example would be intelligence information, where the local DS would try to have all detail relevant to the CP's theater, but only a summary of similar information relevant to the theater of a neighboring CP. Accessing a peer DS should be considered an unusual event.

Information locally generated may be stored in the DS cache or separately. This may or may not propagate back to the DB. If not propagated back to the DB, it probably does not go to a peer DS either, although comparable information may be sent as a message.

3.4. Operating in the CP

A CP does all of its processing locally and is assumed to have enough resources for both operations and planning. No tasks are exported to base or peers. If such external processing is required, say for satellite image analysis, it is performed by the base or peer and placed in a DB that is then accessed by a DS in the CP. It does not seem that a CP ever actually schedules anything remotely. This might be because of the command structure, or just to have a looser processing coupling. If the CP needs to have remote work done, it ships the data along with a request, but does not block.

Within a CP, user interfaces and users obviously need to collocate. It is also the case that users doing similar things tend to be collocated as well; hospital staff in hospitals, logistics people together, etc. So similar function will tend to have at least its external parts together.

Each functional area in the CP will have dedicated computing corresponding to dedicated physical resources attached to the unit. In addition, there are pool resources for the CP. There may be 1-2 levels of pool within a CP.

Resources cannot be "stolen" by another CP.

Critical functions are kept up by an "anchor desk" that serves as the root of that functionality. In our terms, an anchor desk is allocated credits to keep its functions going and constitutes a sort of perpetual user. An anchor desk is logically the point of contact for people between functions. There is a distinguished "Survivability Anchor Desk" through which monitoring and modifications of survivability parameters take place.

3.5. Service Configurations

Some services are pinned up by anchor desks.

Shared services may be either pinned open by an anchor desk or created by collaborators for the purpose of the collaboration.

A replicated service may be synchronized or may be allowed to drift the same as a DS/DB combination. The clients must specify requirements. This is a place where QoS enters the picture. Since any replica can be accessed by a client, the QoS specification is interesting because it varies with client(s) and replica(s) placement. It is possible to start a new replica close to a client without affecting other client/replica QoS except for the effect of the new replica on the synchronization. This looks to me like a very useful area to explore.

A dedicated service may be started anywhere desired by its client subject to resource ownership, resource availability, executability, and QoS.

3.6. Collaboration

Collaboration takes place in several ways.

Within a given function in a CP, the collaborators are pretty much interchangeable; all air campaign planners (human and program) are more or less the same and work can be partitioned between them. These all access the same DS, so they see the same data.

When collaboration takes place between similar functions between CPs, such interchangeability does not exist, since CPs are in charge of specific theaters or operations (like air), you can't substitute one CP for another in a collaboration without violating these boundaries. Further, peer CPs, even when accessing the same DB, go through a different DS, so they probably do not have exactly the same data sets.

Collaboration between dissimilar functions like weather desk and logistics desk requires those specific functions, although the quality can be allowed to degrade. They are not interchangeable since you can't substitute a weather report for a target list.

4. Example of CP Activity

One of the actions that takes place in a CP is Air Campaign Planning (ACP). ACP is basically the detailed selection of targets to bomb and the generation of the detailed orders to make that happen.

4.1. The Command Decision

ACP starts with a commander (probably a general) evaluating the overall situation and determining the kinds of targets to be attacked in a particular area. For example, communications facilities and airports around Basra. To make this determination, the commander views a large map of the theater overlaid with relevant features. These are the kinds of things you can overlay on a StreetFinder kind of map (e.g., airports, churches, parks), their military equivalent (e.g., airports, factories, communications facilities, intelligence headquarters), and mobile things such as unit positions and weather. There may be similar maps at lower resolution for adjacent areas that are the responsibility of a peer. Generally, organizations stay out of each other's areas in order to prevent confusion and friendly fire casualties. Information about adjacent areas is given because these boundaries are not always perfectly respected and because enemies typically like to exploit the seams between units where the coordination is weaker. In addition, there will be theater-wide information presented that does not fit to a map. For example, the fact that there is a threat of biological warfare attacks or that certain doctrine such as no attacks on power plants may be in effect. Commanders also may have wire service feeds; in the Data Wall project at Rome Lab, the commander has a CNN feed so he can see what is being said about the operation, since all things have a political side.

4.2. Map Overlays

Each map overlay contains a different kind of information (physical features, threats, weather, logistics availability & position, etc.) and is managed by a separate group of people and stored by them in a separate DB under their control. For example, intelligence analysts identify threats and targets, meteorologists create weather overlays, quartermaster people maintain the logistics overlay, etc. In the JTF architecture, each of these functions would be managed from an "anchor desk". Some of this information is pretty static, such as the base map and many kinds of features, while others such as unit positions and weather may change relatively quickly.

Each overlay DB is created by using (possibly) several more primitive data sources, each of which is in a DB. For example, the threat overlay is produced by intelligence analysts who look at satellite images to find surface to air missile batteries, communications patterns to determine where orders are being sent to/from, ground observations, order of battle information (e.g., an Iraqi division may be known to have a certain number of SAMs, even if you can't see them).

Each kind of underlying data resides in a separate DB closely tied to how it is produced. The data in an underlying DB may be raw or may have been interpreted by some other analyst. For example, satellite images are interpreted by experts who do little else because of the difficulty in interpretation. They would examine raw images and tag and identify (possibly tentatively) items of interest in the images. They would not attempt to ascribe an importance to what they find. There may be feedback from higher levels asking such analysts to look for particular kinds of items (e.g., look for SCUDs), since there is too much imagery for every image to be examined in great detail. Image analysts are supported by software to identify images of interest; for example, successive images of the same area can be diffed to avoid having to redundantly analyze essentially the same image, and it is easy to find edges, reflective surfaces, hot spots, etc., that are likely to represent man-made items. A lot of model based AI tools are used in this to refine the filtering (e.g., "find long objects on trucks near the edge of woods also near a concrete roadway").

Data in the various DBs may be of different ages, as can information within a single DB. Sometimes a history is needed to draw a conclusion. For example, something appearing in a satellite image may be hard to identify, but being able to tell that it moved from one image to the next may give important information about what it is.

An intelligence analyst may access several different kinds of DBs in order to draw a conclusion about a threat. If not all those DBs are available, the analyst will be less certain about the conclusions, but can still function. Similar for other kinds of analysts.

All of the analysis activities are supported by software tools of some degree of sophistication. There is a range of processing power needed for these from image enhancers up through weather modeling.

Each of these items that are visible on the overlays can be queried (by mousing) to find its properties as reported by the analysts who prepared them. The general typically will see the conclusions drawn about each kind of item on the overlays and only drills down to the underlying information from which it was deduced as needed. This might be the case if he questions how certain a conclusion is. Management and modeling of uncertainty is a current DARPA research initiative.

Given these overlays, the commander and his staff decide what they want to do. This may involve air attacks against certain kinds of targets in a certain region (airfields and communications near Basra). The commander issues orders that an Air Campaign Plan be made to accomplish this.

4.3. Air Campaign Planning

ACP consists of determining which targets meeting the criteria specified by the commander will be attacked, determining how to attack them, and issuing orders for the attacks. Depending on the number of targets, the campaign may be performed by several air commands. If multiple air commands are involved, the ACP will be collaborative among between the CPs at those air commands. Those CPs will most likely be located at the air commands, which may be airfields or aircraft carriers.

If multiple air commands are involved, the targets are partitioned among them in some way so that planes from multiple commands do not get in each other's way, either at the target or en route. This is done by creating "corridors" in which flights must stay. Corridors have both a spatial and temporal dimension, so that the same space can be flown through at different times. Unless aircraft are to meet somewhere en route, the only coordination between commands are in the choice of targets and corridors during planning and the adherence to corridors during flight.

ACP starts by retrieving a list of targets from the DB that was used in generating the target overlays. More detail may be obtained than was presented to the general or the level of detail may be similar. At this point, the objective is to partition targets among air commands. Once this is done, the CPs stay basically separate except if they want to renegotiate targets or when setting corridor boundaries.

Within a CP, there are many human planners, all of whom do the same set of tasks, only for different targets. Planners query databases to find details about targets, available aircraft and munitions, threats (such as SAMs) than can affect the missions, and information about other features (such as hospitals) to avoid collaterally damaging. The information includes location, importance of its destruction, physical features relevant to attacking it (you need to know how thick a runway is to know what you need to drop on it, and you attack runways lengthwise, not widthwise). Some of this information is generic to the class of target, while other is specific to a particular target.

Individual human planners select targets (individually or in sets) and start assigning resources to attacking them. For each kind of target, there is a list of munitions that can be used to attack it with varying costs, probabilities of success, and minimization of collateral damage. Different munitions can be carried by kinds of different aircraft. Different kinds of aircraft have different ranges and there is doctrine that tells what kind of environment certain kinds of planes can be flown into ("don't fly this second tier aircraft into an area where you don't have air supremacy"; i.e., only you have any planes left). Planes start at different bases, which tell where they can get to. The planning problem is basically to maximize some objective function consisting of maximizing the probability of the largest number of high value targets damaged or destroyed while minimizing aircraft loss, munitions cost, and collateral damage. The relative weights of these parameters can be changed for different situations, as can the values of targets. Assignment can be done greedily or there can be a lot of hypothetical assignment that can be retracted and resources assigned differently. For example, the optimal assignments to early targets might cause you to run out of the correct munition type for some lower valued target, so you use the next best munition on the high value target in order to have it available for the lower value target. The reason you might get into this situation is that a smart weapon might give a somewhat better way than a bunch of dumb bombs to destroy a key target, but its use there would make it unavailable for use on a lesser target where possible collateral damage to a nearby hospital from a dumb bomb would be unacceptable. There is a lot of work on software planners to aid in this scheduling problem, but for the foreseeable future it appears that human planners will be heavily involved, at least in validating and setting priorities. In the course of this, the planners access DBs of consistency criteria (this plane can't carry that bomb) and policy criteria (under the current rules of engagement, don't damage power plants) that pose additional policy constraints.

Once targets are assigned, orders must be issued to load the correct munitions on the selected planes and give them route instructions. I don't know if this is part of ACP or is delegated to a yet lower level of CP. For our purposes it really doesn't matter. These detailed schedulers will again access parts of the same DBs as the ACP, although they will access only those slices of immediate concern to them. They will also access other DBs for logistics (where exactly are those munitions?), crew information, etc., that are needed for getting a flight scheduled, but that are not needed by ACP.

There might also be a tie into the logistics system to order more munitions and into a maintenance system to schedule preventive maintenance on the planes most heavily used.

Summaries of the orders are issued to AWACS so that they can monitor the mission, including compliance with the corridors.

After missions are completed, their success is evaluated based on information from the same kinds of DBs as were used in the initial planning; the question now is whether the targets are still there and healthy. The cycle then starts over again with the commander deciding which targets to attack; he may choose to attack a different class of targets, even though some of the original ones are intact.

The cycle of ACP and missions is currently (I think) 24 hours, They want to reduce it, but there is some irreducible minimum even if the planning becomes extremely fast, since missions have to be flown, crews need to rest, and damage needs to be assessed. Thus ACP will always be periodic.

4.4. Processing Assumptions

ACP needs access to a number of DBs that originate external to the ACP function. They will probably be fronted by DSs local to the CP. ACP is performed on a cycle. It is important that an entire plan be consistent to avoid redundant attacks or conflicting operations. This appears more important than using the absolutely most current information. Partly this is because many of the attacks are by human pilots who can compensate or break off an attack where the target has moved. The effect that this "clumpiness" of scheduling has is that it defines the DS cache refresh rate.

It is more important to end an ACP cycle by the time the next flights can take off than to achieve an optimal plan as long as the plan produced is valid. As long as every plan created is acceptable, you can quit at any point you need to when you run out of time and processing power. The way ACP is done takes care of this. In effect, it is OK that the ACP is essentially a batch system, since airplanes must take off in batches also in order to protect each other and coordinate activities. There is no desire to get a plane into the air as soon as it can be given a payload and a target.

Rather than continually update the ACP DS cache, they are attempting to deal with mobile targets by reducing the cycle time so that the snapshot in the cache is less out of date. Although I could not find this, I would guess that the messaging system is used to notify planners that targets have moved or changed in some significant way. Targets no longer valid would then be manually removed from the target list and their resources freed for other missions. This would be similar to what happens when targets and missions are renegotiated between CPs and planners as described previously. If this model is right, that would make the message system a sort of differential DB.

Planners within a CP will grab targets and resources from the DB with little coordination. When they renegotiate and relinquish resources, they will simply put them back in the DB where they will be available for the next planner who accesses them. Planners at this level are physically close together and can communicate these directly, by phone, or by message. Renegotiation between CPs is more significant, since it involves shifting a boundary. Such requests are negotiated by anchor desks at the CPs involved. This is fairly heavy weight and will probably not be done after a lot of detailed planning has happened, since it is likely to invalidate a lot of work already done.

Creating mission orders from target/munitions/aircraft pairings requires more coordination, since the aircraft must physically either fly together or avoid each other. This may be done by a single planner (or small group of interacting planners) taking all flights between a pair of places and coordinating their orders. These flight groups must then be assigned corridors, which requires interaction between the planners for the individual flight groups. There is probably some iteration here, since you don't know what corridor you need until you plan, but you don't know you can get a corridor until you see if it conflicts with someone else.

ACP is very intense for a while, and then resources shift to other tasks. Some of these are related to the missions, like monitoring status (loading munitions, air traffic control, etc.), preparing briefing material for pilots and commanders, assessing previous mission success. Others are just other things that go on in the CP that are only tangentially related, like ordering munitions or scheduling. Other activities in the CP are totally unrelated.

A planner probably has a PC class machine that does mostly display of maps, resources lists, messages, orders being produced, etc. It acts as a personal local cache of data being used by that planner. Larger tasks like route finding, scheduling aircraft, checking constraints, etc., are most probably performed on behalf of individual planners on shared machines in the SPARC class or higher. These machines form a pool that can be used for multiple purposes, not all of which are related to ACP. Use of the pool is dictated by the situation. An interesting idea is that as the ACP plan gets better and improvements get smaller, there is lower priority for ACP compared to other activities. Also, there are shifts between the various ACP functions throughout the day. It does no good to have great target selection if that comes at the expense of getting no orders issued; it is far better to have fewer targets selected and actually issue orders to attack them than to select many targets and attack one.

Some DBs including aircraft resources, munitions, and received messages will be local to ACP, while others including maps, targets, weather, doctrine, intelligence, etc., will be remote and will be served by local DS caches. As noted before, several of these caches can be allowed to be out of date and refreshed on a schedule. Each CP has its own caches.

Local plans need not be shared with peer CPs. The partitioning of targets and resources among CPs must be shared, as must the eventual determination of corridors. The DS caches of similar data at peer CPs will in some cases be identical (weather over targets, doctrine, etc.), will sometimes only be similar (features relevant only at one CP will be at a coarser level in peers), ad sometimes will not overlap at all (weather at the peer base). This affects the ability to use cached data from peers should the local DS fail. Note that since DISA has the notion of DB segments (data and DBMS and scripts and schema), it should be possible to download a segment from the DB to replace a failed DS given enough time.

� (This research is sponsored by the Defense Advanced Research Projects Agency and managed by Rome Laboratory under contract F30602-96-C-0330. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied of the Defense Advanced Research Projects Agency, Rome Laboratory, or the United States Government.

© Copyright 1997, 1998 Object Services and Consulting, Inc. Permission is granted to copy this document provided this copyright statement is retained in all copies. Disclaimer: OBJS does not warrant the accuracy or completeness of the information in this document.

