
ProbeMeister
Distributed Runtime Software Instrumentation

Paul Pazandak and David Wells*
{pazandak , wells@objs.com}

Object Services & Consulting, Inc. Baltimore, MD
Abstract
Dynamically deployable software probes facilitate ad hoc runtime ap-
plication monitoring and troubleshooting. Using the latest features of
Sun Microsystems' JDK 1.4, we have built a prototype system called
ProbeMeister that can attach to multiple remotely running applications,
and effortlessly insert software probes to gather information about their
execution. This information can be used to effect changes within the
running applications to recover from unanticipated failures, or to im-
prove their operation. While ProbeMeister is useful during software
development and testing, its advantages are better realized after the
software is up and running at the users' sites.

1 Introduction
Software probes enable the monitoring of running applications.
Current probe tools are primarily designed for software testing:
developers insert probes into their code or underlying OS during
testing to emit data to help locate bottlenecks, memory leaks,
bugs, or to visualize code coverage, etc. Probes of this kind may
also be left in an end-user version of an application for bug re-
porting: if users encounter problems at a later date, the log files
generated by the probes can be sent back to the software vendor
for analysis. Both types of uses require skilled programmers to
place and compile probes into the application and to determine
the corrective actions to be taken once the probe data has been
gathered and analyzed. Required changes are made and the soft-
ware is recompiled again.

Our goal in developing our own instrumentation tool was to
produce a technology suitable for distributed reconfigurable
component-based software - potentially widely-distributed appli-
cations whose components are loaded on demand. Such systems
are difficult to extensively test prior to deployment, partially
because their environment is often immense (think Internet
scale) and constantly changing. Moreover, the components may
be developed by separate companies and typically evolve inde-
pendently of each other, increasing the probability that problems
will arise.

To probe these kinds of systems, our tool would need to be
able to connect to running applications and deploy probes to
each of the distributed components, then gather up all probe out-
put for runtime tool-based analyses. In conjunction with other
tools, required changes would be made without recompiling or
restarting the application1.
 Using the latest features of Java JDK 1.4, we have built
ProbeMeister, our second-generation instrumentation tool capa-
ble of deploying probes into remotely running Java software.
ProbeMeister instruments Java bytecode, and works without
needing to copy supporting code libraries to the remote ma-

* This research is sponsored by Defense Advanced Research Projects Agency
and administered by the US Air Force Research Laboratory under contract
F30602-00-C-0206. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing the official
policies, either expressed or implied, of the Defense Advanced Research Projects
Agency or the U.S. Government
1 Imagine needing to modify, recompile, and restart a vital army tank subsystem
during battle.

chines. Probes can be deployed and removed at will into any
running Java application, remote or local.
 ProbeMeister is being developed as part of the Software
Surveyor project [1] within the larger DARPA DASADA pro-
gram [2], the goal of which is to develop technology to model,
monitor, and manage dynamically composed and evolving sys-
tems.

2 Overview of ProbeMeister
ProbeMeister facilitates the instrumentation of a distributed
running application with software probes2. It accomplishes this
in part by manipulating the in-memory representation of the
running application. A key capability of ProbeMeister is that its
extensible set of software probes can be inserted or removed at
any point while the application is running. A second key capa-
bility is that it supports the instrumentation of multiple remotely
running applications. Both are necessary for monitoring evolv-
ing, distributed applications; since the application’s connectivity
and components may change during execution, it is essential to
be able to insert and manage probes in multiple remote compo-
nents simultaneously.
 Prior to developing ProbeMeister, we developed the Java
Bytecode Instrumentor (JBCI). JBCI is a static bytecode instu-
mentor. It requires a multi-step process of loading a class off-
line into JBCI, deploying and customizing the selected probe(s),
saving the modified class, and then restarting the application.
Removing a probe requires similar steps. What we found was
that once we knew exactly where we wanted to deploy all of the
probes, the process was relatively quick. However, we also
found that probe placement is an intensely iterative process un-
less perhaps the user is also the developer. For the overall proj-
ect that we are involved in it is understood that a ProbeMeister
user is not always the developer, but perhaps only a skilled ap-
plication user having solid but general knowledge about how the
application works [3]. When the application is not performing
as expected, either as determined by the user or by pre-deployed
(possibly even statically deployed) monitoring probes, task-
specific probes could be deployed to gather more information to
determine if a given component is not working as expected. A
corrective response could be to modify specific parameters in
the code to tweak its behavior, or to replace the component with
a more reliable or more available one.
 As software developers, we felt that the probe deployment
cycle was a hindrance to ad hoc exploratory probing. This was
the prime motivation for replacing JBCI with the much more
dynamic ProbeMeister. In moving from JBCI to ProbeMeister,
we immediately enjoyed the benefits of dynamic distributed
probe deployment. Not only did it practically eliminate the de-
ployment cycle, but also the results generated by the probes
could be seen immediately without having to restart the applica-
tion.
 Supporting easy probe placement by non-developers re-
quires additional tools and interfaces having knowledge of the
application's architectural model, that can suggest probe de-
ployment locations (or automatically deploy probes) based upon
the problems the user (or the analysis tool) wants to trouble-
shoot. Model-based probe deployment is the focus of another

2 ProbeMeister also supports the dynamic creation of new classes and complete
redefinition of existing classes.

aspect of the Software Surveyor project, and will be the topic of
a future paper.
 Finally, ProbeMeister has not been designed to compete
with coverage-oriented optimization tools. These tools are cer-
tainly more efficient at this since they can statically instrument
an entire application with perhaps hundreds or thousands of
probes to collect performance data. ProbeMeister is geared to-
ward targeted placement of probes to inspect (and possibly effect
changes upon) a running distributed application. However, the
new interfaces in JDK 1.4 now makes it unnecessary to deploy
any probes into a remote application to provide coverage feed-
back. We just haven't focused on exposing this capability in Pro-
beMeister yet.

2.1 Related Work
Prior to developing JBCI (about two years ago) we performed a
reasonable search and tool review of several Java (and C++)
bytecode related packages (see Related Works in section 8 for
the links to the mentioned Java tools). We were looking for an
extensible tool that would allow us to write our own bytecode
probes and deploy them. While we could have looked at source
code probe deployment tools, we didn't want to limit probe de-
ployment to applications in which we had source code access,
nor did we want the overhead associated with adding a recompil-
ing step to the deployment cycle. We found that some of the
available instrumentor tools appeared to be closed, and didn't
allow one to write their own probes. These tools were geared
toward software profiling (e.g. JProbe, NuMega, OptimizeIt!).
Some other tools were close to what we were looking for but
were not extensible, no longer supported, or too costly (e.g.
JOIE, Jtrek, JFParse). Yet another group approached instrumen-
tation by providing modified or pre-instrumented JVMs (e.g.
Jinsight, eTective, BCA). Finally, the last tools (e.g. BIT, Jikes,
and BCEL) were simply bytecode editors. For our needs, we
thought it would be more efficient to prototype our own tool
using one of these editors. Jikes is the editor we integrated into
JBCI.
 Even though JBCI worked reasonably well as a standalone
tool, it could not be used (in the next stage of the DASADA pro-
gram) by other tools at runtime to deploy probes since it only
supported static instrumentation. This was an obvious and sig-
nificant drawback to using JBCI. Thanks to several people at
Sun Microsystems, we were fortunate to get access to an early
version of JDK 1.4 in which the Java debug interface (JDI) had
been extended to support remote runtime bytecode modification
[4]. Using JDK 1.4, we began a complete re-implementation of
our tool (about one year ago), now called ProbeMeister.
 We should mention that we did find some similar tools once
we began implementing ProbeMeister. For example, we found
an interesting product called RootCause, which offered a sort of
"one-time" dynamic probe deployment by instrumenting a class
as it is loaded into the JVM. Other similar products like this exist
in the C++ world, such as NTWrappers, that can modify a DLL
just prior to it being loaded by the OS. Of course, none of these
offered the kind of flexibility we desired.

3 ProbeMeister Architecture
In this section we present a high level view of the ProbeMeister
architecture. In the lowest layer, ProbeMeister has a Virtual Ma-
chine (VM) Manager that accepts or initiates connections with

other JVMs via the JDK's JDI interface. Connection behavior is
enabled and configured by the targeted application through
command-line arguments to the Java interpreter -- the applica-
tion may initiate the remote connection (as a client) to Probe-
Meister (running in a separate JVM), or it may begin its execu-
tion and allow ProbeMeister to initiate the connection (acting as
a server) at some later time. In either case the targeted applica-
tion requires no additional code as the underlying JDI exten-
sions manage the connection to ProbeMeister. Using the JDI
interface, an application like ProbeMeister can set breakpoints,
subscribe to events (e.g., class loading, method entry and exit,
etc), modify methods, and even create new classes ones on the
fly.
 If the application initiates the connection to ProbeMeister,
the connection is established before the core JDK classes have
been loaded, and therefore also before its main() method is in-
voked. This enables probes to be deployed before any of the
application code has been invoked. It therefore allows the
probes to capture the application's entire behavior from the be-
ginning. When the connection to the application is opened,
ProbeMeister stops the remote JDK's execution prior to loading
of any of the application's classes. This enables the user to in-
strument any of the core JDK classes (such as java.io.File to
monitor file access) and therefore capture all application activ-
ity. The user could also schedule probes to be automatically
deployed as the application's classes are loaded.

Figure 1. ProbeMeister Deployment Scenario
 While having each application connect to ProbeMeister is
convenient, we feel that it is an unreasonable constraint. Pro-
beMeister should be able to be activated on-demand, as needed.
JDI-specific Java interpreter command line arguments allows an
application to accept a remote connection at any point during its
execution. Using this approach, a ProbeMeister user (or external
tool) may request a connection to an application by specifying
its address and port (as defined in that application's command
line arguments). After a connection is established ProbeMeister
may be used to deploy probes.
 Once an application is connected to ProbeMeister it is as-
signed a set of components: a Connection Manager that man-
ages the communication with the remote application; a Probe
Manager that controls the creation and deployment of probes;
and, a Configuration Manager that provides control to deploy or
remove several probes (a probe configuration) simultaneously.

 Finally, in the highest layers, ProbeMeister provides a user
interface as well as programmatic interfaces so other tools can
control it (locally or remotely). The following describes each of
the connection-specific components in more detail. Figure 1
shows the architecture of ProbeMeister in a typical deployment
scenario.
 In the depicted scenario, ProbeMeister is connected to four
remotely running Java Virtual Machines (JVMs) that make up a
given distributed application. Probes that have been inserted,
when invoked, emit descriptive events to the Siena Distributed
Event Server [5] event bus3 for remote delivery to interested
consumers. The emitted events are consumed by a separate ex-
ternal system (tools under development) that analyzes the events,
generates user consumable output (status or warnings), and may
also feedback into ProbeMeister by dictating further probe re-
configuration. Of course, ProbeMeister can be used for manual
user-driven monitoring and analysis. For this, we have built web
browser-based HTML and XML user displays that collect and
categorize probe events, and display event details4

3.1 Communication Manager
When a connection is established between the VM Manager and
a remote application the connection is assigned to a communica-
tion manager. The Communication Manager manages the con-
nection with a distributed application or component via the JDK
1.4 JDI interface. It provides the routines for accessing the re-
mote classes, modifying the classes, and monitoring the state of
the JVM. All calls affecting the remote JVM pass through this
component.

3.2 Probe Manager
The probe manager controls the insertion and removal of appli-
cation probes. Probes may be inserted when a class is first
loaded, before any of its methods are invoked, or at any point
after that. Insertion involves loading the chosen class' Java byte-
code from its class file, modifying the selected method by insert-
ing the probe-specific bytecode, and writing out the modification
to the remote JVM using the JDI API call:
 VirtualMachine.redefineClasses().

 ProbeMeister currently uses the Bytecode Engineering Li-
brary[6] to modify Java bytecode5. To understand the minimum
cost to deploy a probe, it takes on the order of 20 milliseconds to
create a basic probe, modify the bytecode, and invoke rede-
fineClasses()on a small locally running application. It took
an average of about 250 milliseconds to deploy the same probe
on the same application running in Baltimore with ProbeMeister
running in Minneapolis6. This has been more than adequate to
date given that we have created on the order of no more than
tens of probes per remote application.
 redefineClasses() takes as an argument the entire
modified bytecode of the class. Once invoked, it replaces the
class definition in the remote JVM. However, only new invoca-
tions will execute the new version of a modified method; cur-

3 Siena is the event bus for many projects in the DASADA program.
4 Probe event content may include probe location, invocation time, stack traces,
user-assigned values, and method arguments, for example.
5 We switched from using IBM's Jikes because of licensing constraints (only
evaluation licenses were available), and because it was no longer being improved
6 We found that it takes several minutes to define a new class which is a concern
to us, but we have not yet studied this issue in detail.

rently running invocations will run to completion using the
older code. And while the JDI specification allows for consider-
able changes to the bytecode (e.g. new methods, new attributes,
completely redefined class, etc), it is up to the individual JVM
implementations. At this point, Sun's JVM implementation only
supports method modification. Once ProbeMeister modifies a
class, since the modifications are transient a copy of the modi-
fied class bytecode is retained and used as the basis for any fur-
ther probe insertions or deletions. A detailed description of the
supported probe types is presented in a later section.
 While ProbeMeister's Probe Manager has been designed to
support the management of heterogeneous (multi-language)
probes, thus far we have focused exclusively on supporting dy-
namic (or runtime) Java bytecode probes. Runtime probes are
inserted while the application is running, while static probes are
inserted when the application is offline. Runtime probes are
transient by default, and are lost once the application terminates;
static probes are persistent by definition. To make runtime
probes persistent, the in-memory modifications need to be saved
back to disk in Java classfile format. The modified classfiles can
replace the original classfiles, or be stored separately (however,
the configuration manager eliminates the need to do this, as
described in the next section).
 Finally, while ProbeMeister maintains a list of inserted
probes for each JVM, the Probe Manager is also capable of
automatically identifying all probes that have been previously
inserted (whether statically or dynamically) by parsing and rela-
tively quickly examining a method's bytecodes. This mechanism
is also used to validate external configuration files to ensure that
they accurately reflect the current set of inserted probes in a
given instrumented version of the application.

3.3 Configuration Manager
While the act of placing probes is quite straightforward, it
would become tedious if one had to redefine and redeploy
probes each time ProbeMeister connected to the application --
for each remote component. For this reason we implemented a
probe configuration manager. The Configuration Manager is
responsible for tracking and recording all probe deployments to
each application. The current configuration can be viewed and
saved (to XML-based configuration files) at any point. Once
saved, a configuration can again be viewed, and also reloaded
and reapplied. Reapplying a configuration causes all probes to
be reconstructed and then deployed to the selected application.
 A second use of configuration files is to define probe sets
that target specific activities or parts of the application (e.g. file
access, network traffic, etc.). Using these sets, one could load
and monitor the output from one probe set, then deapply the set
(which removes deployed probes) and reapply another set.

3.4 User Interface
The graphical user interface (see Figure 2) provides access to all
of the features described above. Virtual machines (applications)
waiting to attach to ProbeMeister are announced at the bottom
of the display. As stated, the user may also initiate a connection
(using the menus) to a remotely running virtual machine. Once
connected, the user resumes the virtual machine's execution.
Each tab in the display represents a different remote virtual ma-
chine running a separate component or application. This figure
shows two applications that ProbeMeister is connected to. The

first is a remotely running GeoWorlds[7] client application, the
second is a service component used by the client. GeoWorlds is
a central part of the software testbed within the DASADA pro-
ject because it is a distributed component-based application that
dynamically assembles itself on-demand.
 The interface lists all of the application's classes that have
been loaded (the core JDK classes have been filtered out using
the controls at right). The add() method has been instrumented
with a simple probe -- this probe outputs a user-provided string
to the application's console. From the list of classes one can also
see a class that ProbeMeister has dynamically deployed (called
OBJS_Breakpointer) into the remotely running virtual machine.
ProbeMeister automatically deploys this class into each attach-
ing JVM to control breakpointing (methods belonging to classes
in a remote JVM can only be invoked at breakpoints).
 Probes are inserted by dragging a probe from the list of
probes onto the desired method. Most probes require some con-
figuring and present displays for customization. The probe icons
are used differentiate between deployed and undeployed probes,
and simple probes and probe stubs (described later).
 The Gauge Deployment Requests list illustrates how exter-
nal tools may suggest deployment locations within ProbeMeis-
ter. These tools may also automatically deploy probes without
user intervention. This interface is only present when requested
(and is the subject of a future paper on Software Surveyor).

3.5 Other Interfaces
ProbeMeister provides access to its functionality through local
and RMI-based programmatic interfaces. As seen in Figure 2
and discussed briefly above, Gauge Deployment Requests are

sent over RMI to ProbeMeister. These external software gauges
consume the events emitted (over the event bus) by deployed
probes, so when gauges are first activated they suggest or auto-
deploy (via deployment requests) the probes required to monitor
the targeted activity.

4 Probes
ProbeMeister provides a Statement Factory to generate bytecode
probe definitions on the fly. Probes are defined like recipes
where the ingredients are Java bytecodes. Defining a probe rec-
ipe requires identifying the series of calls to be made to the
Statement Factory. Each call adds one or more Java bytecodes.
While several probe recipes are provided, others can be added to
the library by extending the BytecodeProbeInterface. Probes can
also be constructed in an ad hoc manner by directly calling the
Statement Factory via the programmatic interface. Furthermore,
the Statement Factory can also be extended with more func-
tional bytecode building blocks. The following example illus-
trates how the simple PrintStringProbe class creates bytecode
using the Statement Factory and inserts it into a specified
method (defined in a bytecode location - bLoc).

[a] StatementList sList =

 BytecodeMgr.createStatementList(bLoc);
[b] StatementFactory.createPrintlnStmt(sList,
 userStringToPrint);
[c] SimpleProbe simpleProbe = new SimpleProbe

(probeID, probeDescription,
 probeType, sList, bLoc);

[d] BytecodeMgr.insertProbe(simpleProbe);

Initially [a], a new structure (StatementList) is created that will
hold (and validate) the probe-specific bytecode. In [b], the call to
the Statement Factory's createPrintlnStmt() generates
bytecode that outputs the specified string, and then inserts the
custom bytecode into the StatementList. In [c], a new simple
probe wrapper is created (it knows how to deploy simple
probes). It is passed a unique probe ID, a probe description, a
probeType (PrintStringProbe), the StatementList, and the byte-
code location. Finally, the probe is inserted into the targeted
method. Once this is done, redefineClasses() may be called
to propagate the update to the remote JVM.
 ProbeMeister defines two types of deployable probes: sim-
ple probes and probe stubs. Simple probes are self-contained
units of code. While they may call out to other methods owned
by the application, they do not require any more probe-specific
code to function. The current set of predefined simple probe
recipes include a probe that outputs a user-defined string (dis-
cussed above), one that outputs the method's argument values,
another that calls a specified static method, and a similar probe
that calls a static method using introspection wrapped with ex-
ception handling. Simple probes may output information to the
console of the remote application (such as argument values), or
modify method state, for example. But, without supporting code,
a probe cannot emit events. This is one motivation for probe
stubs.
 As there is only so much one can do with a probe in a single
method, we found a need for a probe that could be divided in
two: we call them probe stubs and probe plugs. A probe stub,
like a simple probe, may perform intra-method manipulations
such as modifying argument values or outputting data to the
console. However, a probe stub is also able to perform more
complex tasks because it calls out to one of an array of probe
plugs. For example, two of our pre-defined stubs (probe recipes)
include one that emits status information, the stack trace, a user-
defined string, an event name and sub-event name; the other also
emits the set of method arguments. This information can then be
passed to a plug for further processing, and even return values
back to the stub (e.g. to effect state changes).
 Unlike probe stubs, which are written in Java bytecode,
probe plugs can be written in Java. This really simplifies the
writing of the bulk of the probe's functional code. A probe plug
provides specific functionality that may perform any task. We
currently use probe plugs to emit data from the probe stubs over
the Siena event bus. Stubs are matched to plugs by their method
signatures. When a user selects a probe stub to install, the Probe
Manager returns a list of all compatible probe plugs from the
ProbePlugCatalog. The user then selects an appropriate plug
based upon its functional description. Like simple probes and
probe stubs, new probe plugs can be added by registering them
in the appropriate persistent catalog.
 When stubs will be used, either the remote virtual machine
must include the associated probe plug classes in its classpath, or
ProbeMeister can port the probe plug classes to the remote vir-
tual machine on the fly. The latter of course is preferable, as
otherwise the plug code will need to be copied to each remote
computer. However, if a considerable number of classes need to
be deployed it may require significant overhead7.

7 The Siena Distributed Event Server is composed of 54 classes, making it more
practical to copy the jar file to each site. However, it is likely that we could mod-
ify it to reduce the number of classes significantly, thus making it possible to
deploy on the fly.

 Finally, the Statement Factory validates the structure of
each probe (only the Statement Factory can insert bytecode into
a StatementList) and uses a wrapper mechanism to ensure that
the probe can be removed once deployed.

5 Issues
There are a number of issues and limitations that are worth men-
tioning. First of all, as previously discussed, simple probe out-
put is constrained to the remote JVM's console window because
the probe code is executing within the context of the remote
application. This is useful for certain types of debugging and
monitoring, especially if the application is local. But, if the ap-
plication is distributed, there must be a way to collect the probe
output from each remote JVM. Using probe stubs and support-
ing code a probe can emit events external to the remote host. As
previously mentioned, we currently support this capability using
Siena. The events generated by the probes are published to a
remote Siena event server and subscribed to by our user-
oriented Siena event monitor (and other Software Surveyor
gauge tools), which then displays the event data in a web
browser. Other event publication schemes are also possible. For
example, one could use the Java JDK 1.4 Logger API to emit
probe events in the form of log messages via TCP streams to a
remote collection system.
 Another issue is probe control. Currently probes deployed
in the remote application can only be disabled by removing
them. One potential alternative would be to simply modify the
probe bytecode by inserting a jump instruction to bypass the
probe code. This is slightly more efficient than removing the
entire probe and reinserting it at a later time. Another alternative
would be to port a new class that contains a vector of Boolean
switches. Each probe would then check its own on/off value in
this vector prior to executing. ProbeMeister would modify the
values in this vector by remotely invoking a method to alter the
on/off values. However, (unlike method modification) object
invocations using the JDI API require that the remote applica-
tion be at a breakpoint. We have yet to measure the overall cost
of this approach. Although, given that remote probe removal is
on the order of 250 milliseconds it has yet to become a major
issue.
 While using the JDI API, we've noticed three important
constraints. First, to modify a method ProbeMeister needs a
copy of the complete bytecode of the class because critical
pieces found in a .class file are not defined at the method level.
This includes, for example, the bytecode boundaries in which a
given attribute is valid, as well as the definition of exception
handlers. Unfortunately, we have learned that the JVM cannot
synthesize class definitions, so at this time ProbeMeister must
have access to copies of all of the bytecode it may edit. Second,
there is no straightforward method to reliably cause a breakpoint
to occur in the remote JVM. While one can arbitrary set a
breakpoint using the JDI interface, the problem is knowing
where to set the breakpoint. We have created a simple mecha-
nism that allows ProbeMeister to cause a breakpoint at anytime
(using our Breakpointer class as described earlier), but only if
the application attaches to ProbeMeister at startup (because we
know where the application will begin execution!). We have not
yet looked for a reliable way to port the Breakpointer class to
the targeted application if ProbeMeister attaches to a running
application. However, ProbeMeister needs to set breakpoints so
it can invoke methods on remote objects.

 The final constraint is that when an application connects to
ProbeMeister there is no way to identify it. We have imple-
mented a mechanism that will read special ProbeMeister-specific
parameters that can be included in the command line (this re-
quires ProbeMeister to invoke methods in the remote JVM to
access these values). Preferably, such metadata would be made
accessible via the JDI API prior to accepting a connection.
 Another limitation is that our supplied probes cannot modify
a method's arguments when the symbol table is not included in
the class (a compile-time option can strip a class of its symbol
table). However, a probe could modify these values by cross-
referencing the original source, though we have not tried this.
Not having the symbol table limits what a probe can do in a run-
ning application, for better or worse. Still, if needed, it is possi-
ble to access a method's local variables by statically instrument-
ing the source code. For example, we have instrumented the
source code of some core JDK classes (e.g. java.io.File and
java.net.URL) with special probes that provide access to more
details than otherwise currently possible with our bytecode
probes.
 With respect to performance issues, we have noticed that
while probe deployment is relatively quick, remotely deploying
new classes appears quite costly – on the order of 100+ seconds.
We have yet to investigate this issue to determine the source of
the problem, but we did notice significant bandwidth usage.
 Like any other code writing, it is important to extensively
test new probes as poorly written probes can easily cause catas-
trophic effects (the creation of the Statement Factory was in-
tended to minimize such problems). And while the inclusion of
exception handling in a probe addresses some of these concerns,
it is still quite easy to write damaging code if one is not careful.

6 Plans
We are working to extend and enhance ProbeMeister. As men-
tioned earlier, probes need a distribution infrastructure to emit
events. As the Java JDK 1.4 Logger can send logged data to a
remote location, this will be a lightweight alternative to using
Siena. If the application is already using this mechanism, then
we could also merge and remotely route application output and
probe output together. Furthermore, the Logger API defines log-
ging levels that we plan to extend to control which probes emit
events. We plan to explore this approach to turning on and off
probes, in addition to the current "deploy, remove, and redeploy"
approach.
 Another feature we are exploring is to remove the limitation
requiring local bytecode access so that a method can be modi-
fied, and probe installed. This requires that ProbeMeister have
access to a copy of every classfile in which a probe might be
deployed. To alleviate this, we plan to deploy helper classes into
the remote JVMs that will load and transmit (back to ProbeMeis-
ter) the classfiles to be modified. This will also guarantee that
the classfile used by the application is the same version that
ProbeMeister is modifying.
 Currently, ProbeMeister is limited to blind instrumentation.
That is, it does not display the source code, or allow the user to
specify probe location as a source code line offset. We plan to
extend our user interface to support the ability to specify the
location of a probe similar to how breakpoints are placed within
a debugger interface.
 Finally, we plan to define some default probe configurations
for addressing common monitoring needs, such as network
activity, binding failures, and file access. This would allow a

tivity, binding failures, and file access. This would allow a user
to quickly isolate certain types of problems, after which they
could manually deploy probes into specific components given
what they had observed.

7 Acknowledgements
Many thanks to Sun Microsystems Java CAP team for providing
access to, and support of, JDK 1.4 (special thanks to Jim Holm-
lund for his responsive support in debugging JDI-related issues).
Thanks also to the reviewers for their invaluable feedback.

8 Related Work
This is a partial list of related Java-specific tools.

Bytecode Modifiers
• JOIE: The Java Object Instrumentation Environment ,

http://www.cs.duke.edu/ari/joie/
• Geoff Cohen (Duke/IBM), Jeff Chase (Duke), and David Ka-

minsky (IBM), Automatic Program Transformation with
JOIE in Proceedings of the 1998 USENIX Annual Technical
Symposium

• CFParse , http://www.alphaworks.ibm.com/
• BIT: Bytecode Instrumenting Tool ,

http://www.cs.colorado.edu/~hanlee/BIT/index.html
• Jikes Bytecode Toolkit ,

http://www.alphaworks.ibm.com/tech/jikesbt
• Bytecode Engineering Library , http://jakarta.apache.org/bcel/
Commercial Probe Deployment Tools
• JProbe Java Performance Tools http://www.klgroup.com/jprobe/
• JTrek , http://www.digital.com/java/download/jtrek/index.html
• NuMega DevPartner® Java™ Edition , http://numega.com
• RootCause -Java and C++, http://www.ocsystems.com
Research Probe Deployment Tools
• NTWrappers - C++ - http://www.teknowledge.com
Pre-instrumented JVMs
• Jinsight , http://www.alphaworks.ibm.com/tech/jinsight
• eTective , http://www.averstar.com/products/etective.html
• Binary Component Adaptation for Java (BCA),

http://www.cs.ucsb.edu/oocsb/bca/index.html

9 References

[1] Software Surveyor Project,

http://www.objs.com/DASADA/index.html
[2] DARPA DASADA Program,

http://www.darpa.mil/ito/research/dasada/projects.html
[3] D Wells and P Pazandak, “Taming Cyber Incognito: Surveying

Dynamic / Reconfigurable Software Landscapes”, In Proc of 1st
Working Conference on Complex and Dynamic Systems Architec-
tures, Dec 12-14, 2001, Brisbane, Australia.

[4] Sun Microsystems JDK 1.4 Java Platform Debugger Architecture,
http://java.sun.com/j2se/1.4/docs/guide/jpda/jdi/index.html

[5] A. Carzaniga, D.S. Rosenblum, and A.L. Wolf "Design and
Evaluation of a Wide-Area Event Notification Service". ACM
Transactions on Computer Systems, 19(3):332-383, Aug 2001

[6] Bytecode Engineering Library, http://jakarta.apache.org/bcel/
[7] M Coutinho, R Neches,et al, GeoWorlds: A Geographically

Based Information System for Situation Understanding and
Management, In Proc of 1st Intl Workshop on TeleGeoProcessing,
May 6-7, 1999, Lyon, France.

