Analyzing and Representing Componentware Structure

David Wells

Object Services & Consulting, Inc.

Abstract

This paper defines “componentware configurations” as used in OBJS’ Software Surveyor, a tool to detect and present the configurations of deployed instances of component-based applications. “Views” of configurations are defined and the salient characteristics of configurations are identified. Operations on configurations are identified.

A. Introduction

Knowledge of the configuration of software as actually deployed and used is essential for diagnostic and maintenance activities. Knowledge of configurations helps answer the following questions:

· Is the software organized as expected?

· If it is broken, where did it break?

· What actions can be taken to fix it?

Each of these uses requires either analysis or maintenance tools, possibly in the hands of a skilled user. Such tools can be used throughout the software lifecycle to answer more detailed questions, including:

· How the components are connected together: Do all connections meet specifications? Are all required bindings are satisfied? Are unexpected components present? Do seemingly valid bindings produce expected behavior?

· How, when, and why the connections were made: Who/what is responsible for an incorrect binding? Can a specific binding be changed? Is some binding tool (e.g., a Trader) is using a bad selection policy? Are binding decisions made consistently?

· Physical organization: Where are the components physically located Where are choke points? Are untrusted machines being used? Are components vulnerable to physical assault/failure?

· Comparison of current configuration to other configurations: Is the configuration consistent with the specification? How does a faulty configuration differ from a known good configuration? What differences exist between a currently faulty configuration and a previously working configuration?

· Changes to a configuration graph: What changed? What process changed it? Was a change authorized? Did an authorized change actually happen? Does a change indicate a possible intrusion or failure?

· Unused or unexpected components: Opportunity for pruning the configuration to reduce footprint. Identify potential viruses and Trojan Horses. Simplify the evolution process by not evolving unused modules.

· Usage patterns: QoS monitoring. Identify “hot spots”. Provide inputs to resource allocation & optimization tools. Identify “suspicious” activity.

· Identify patterns of connection quiescence: Allow unused connections to drop safely. Identify “windows of opportunity” for evolution.

· Identify functions invoked on the various connections: Security monitoring. General diagnostics.

· Identify potentially unused functions/methods of libraries/components: Allow more specific library loading to reduce code footprint. Simplify evolution by only upgrading functionality actually in use.

B. The Parts of a Configuration

Our understanding of the salient features of software configurations should be influenced by the kinds of software systems being profiled. In this work, we consider componentware; software that is assembled by composing preexisting parts, possibly using “glue” software to facilitate the composition. The components themselves are considered immutable; i.e., we will not consider the process of modifying components.

Componentware configurations are considered to be annotated graphs, whose nodes correspond to the immutable components and whose edges correspond to bindings (connections, whether actively used or not) between components. This is the topology of a configuration. Configurations also have a geometry corresponding to the physical computing, storage, and communications resources on which the components execute. Both may change over time. There is a mapping between the topology and the geometry, and the geometry may change while the topology remains constant (e.g., a process is relocated).

The following are the salient constructs of a configuration:

· The immutable components

· The logical connections between components (who calls whom & protocols used)

· The resources on which the components execute (hardware & software environments)

· The connection medium (physical paths)

The first two of these constitute the topology of the configuration, while the latter two are the geometry.

C. Different Views of Componentware Configurations

In the above discussion, it was implied that it is easy to define/identify components. However, it is not quite this simple. The fundamental question is: “what constitutes a component?”. Is it all software running on a single machine, in a single process, packaged in a single library, a single class, a single function, a single statement, …? The answer is: “it depends”. Three factors affect the definition of a component: tools (and skills) available to the user, profiling tool capabilities, and security constraints.

User tools and skills determine the set of actions that can taken to validate or modify a configuration. For example, it requires a compiler to modify a class definition, a packager to change a library’s contents, access to a control panel to change IP settings, etc. Without these, a portion of a graph is immutable, and hence can be considered to be a component “from that point of view”. Software Surveyor’s profiling tools determine how accurately a configuration can be profiled. Depending on the available types of probes and their placement, it may not be possible to profile all parts of a configuration adequately. Such areas are essentially opaque, and given the lack of information, they must also be treated as immutable components even if tools that could modify the graph are available. Security constraints may prevent certain modifications, even if the tools to do so exist and it is possible to profile the configuration adequately. In this case also, the immutable part of the configuration can be considered to be a component.

While the collection of available tools does not change what is actually in a configuration, it certainly influences how we think of a configuration and serves to scope the problem. For instance, while a compiler treats code as a graph whose leaf nodes are tokens and whose internal nodes are expressions and so forth, this detail would be of no use to an administrator trying to deploy or reconfigure a system. Such extraneous detail would in fact obscure the real issues and therefore be detrimental. Thus, the same profiled software may present different configuration graphs to different users depending on their tools, skills, profiling tools, and security classification. This should be seen as an advantage rather than a drawback, because it allows us to present only information that is useful, rather than leading a user into a morass of true, but irrelevant information.

Note further that a configuration graph is actually a hypergraph. An immutable component in one view may fact expand into a graph of smaller components in a finer-grained view or a view from a different perspective. This is good, because it again allows viewing a configuration at a useful level of detail for the task at hand.

One of the implications of the existence of multiple views of configurations is that Software Surveyor can and should coordinate its collection, analysis, and presentation activities based on the desired view(s).

D. A Language to Describe Configurations

We choose the architecture definition language Acme for representing configurations. This is in line with decisions made by other DASADA projects, and will allow us to be compatible at this level.

In Acme, “legal” application configurations are specified as an annotated component graph. Components can themselves be graph structured, providing the necessary ability to represent configurations at differing levels of granularity. Existing Acme specifications provide a ready-made framework that can be augmented by Software Surveyor to construct the actual deployed configuration. Essentially, what will be done is to use the probes to determine which specific components fill the various architectural roles identified by the specification, how connections were made, and where the components reside. Eventually, Software Surveyor will attempt to deduce configurations even where there is no initial specification, but this is a substantially harder problem and will be deferred for now.

E. Attributes of Components, Bindings, and Resources

The point of Software Surveyor is to fill in details about configurations that are left unspecified in the application’s Acme specification and to ultimately to determine whether a deployment adheres to its specification. This section identifies attributes of components, bindings, and resources (platform & communications) that seem relevant to this task. The lists should not be considered complete.

E.1. Component Attributes

· Code ID (name or UID)

· Version

· Source (file, library, repository, etc.)

· Resources used (see resource attributes also)

· Load status (bound but not loaded, loaded, running)

· Process ID (could use more than one process, one process per component, or multiple components per process)

· Footprint

E.2. Binding Attributes

· Components bound

· Component roles within binding

· Initiator of the binding (possibly one of the components, could also be a separate entity)

· Binding / interaction type (see next section for list of types)

· Arguments used to establish binding

· Source of binding arguments (function call, file, operator entry,…)

· Binding engine (Trader, ORB, namespace entry – see also F.1)

· Time binding established

· Whether binding can be remade & if so, how (a function of the binding type)

E.3. Platform Attributes

· Location(s) (a complex component may span machines, so in general, all of the attributes below may be plural)

· Processor type

· Speed

· Memory use

· Disk availability

· Memory cache size

· OS type & version

· Scheduling policy & priority/CPU percentage used or guaranteed

E.4. Communications Resources

· Media type (local, LAN, WAN, radio, …)

· Path

· Bandwidth scheduling policy & gaurantees

· Network load

F. Bindings Mechanisms & Interaction Protocols

The glue that holds configurations together are the bindings between components. There are many different types of bindings. I’m not quite sure how to distinguish between the act of binding and the resultant communication type, as they appear to me in practice to be rather intertwined. In principle, there should be separate acts for selecting the components to be connected and then choosing the protocol by which they communicate. But in practice, it is often the case that the two steps are commingled. In the following, I try to separate the two.

F.1. Binding Mechanisms

Note that more than one of these styles can be used for any given binding. For example, part of a specification may be embedded in a component, while the remainder is defaulted by reference to a path.

· Names embedded in component code (file names, directories, machine names, URLs)

· ORB defaults

· Trader based on supplied predicate + defaults

· Contained in referenced files

· Namespaces

· Search engines that return URLs

· URL redirection

· Linking (including DLLs)

· Make files

F.2. Communication Protocols

· Function call / RPC / RMI

· Method invocation

· Agent-grams

· HTTP

· Email

· FTP

G. Actions on Configurations

Generic actions that can be taken are addition (add component, add computing resources, create a new binding, add bandwidth, …), removal (drop a component, limit bandwidth, lower processing power), and modification (change bindings, move a process, …- note: we ignore the ability to change component implementation).

Modification is not synonymous with add + remove, since modification retains identity (such as it is) and is not necessarily known by other parts of the configuration. For example, if a Web server code is modified, clients will be unaware of the change; URLs will not change, etc. If a server is removed & added back, these may change. More complex examples occur if there is state associated with a connection. In that case, “modification” would require that the state be kept consistent across the change, while “add + remove” would potentially lose state and require compensating actions by other participating components.

The IntelliGauge TIE defines operations that we need to concern ourselves with for the 2001 Demo.
H. What Next?

If we agree more or less on the outlook above, then the following need to be done:

· Populate the various lists with anything else we can think of. There is no need at present to try to further organize these, as I expect we can’t do a good job until we have more experience with collecting & using. Eventually I’d like each of these categories to shape up like a class hierarchy.

· Given the activities defined by the demo scenario, determine what constitutes a component in GeoWorlds from those viewpoints. It would help if we had an Acme spec of GW from ISI. I’ll ask them for one.

· Given that, figure out which specific binding and component technologies must be monitored to profile GeoWorlds.

· Determine how to monitor those and emit events/reports.

· Annotate the Acme spec of GW with the newly collected information. We will have to invent annotations to do this, but Acme provides a hook to hang that stuff onto.

· Figure out how to display the Acme graphs that we annotate. Acme provides tools to do this, but we will have to decide what we want to do about making the collected information stand out, rather than just being lists of attributes attached to every component & binding.

